123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382 |
- // Copyright 2018 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package x86
- import (
- "github.com/twitchyliquid64/golang-asm/obj"
- "errors"
- "fmt"
- "strings"
- )
- // evexBits stores EVEX prefix info that is used during instruction encoding.
- type evexBits struct {
- b1 byte // [W1mmLLpp]
- b2 byte // [NNNbbZRS]
- // Associated instruction opcode.
- opcode byte
- }
- // newEVEXBits creates evexBits object from enc bytes at z position.
- func newEVEXBits(z int, enc *opBytes) evexBits {
- return evexBits{
- b1: enc[z+0],
- b2: enc[z+1],
- opcode: enc[z+2],
- }
- }
- // P returns EVEX.pp value.
- func (evex evexBits) P() byte { return (evex.b1 & evexP) >> 0 }
- // L returns EVEX.L'L value.
- func (evex evexBits) L() byte { return (evex.b1 & evexL) >> 2 }
- // M returns EVEX.mm value.
- func (evex evexBits) M() byte { return (evex.b1 & evexM) >> 4 }
- // W returns EVEX.W value.
- func (evex evexBits) W() byte { return (evex.b1 & evexW) >> 7 }
- // BroadcastEnabled reports whether BCST suffix is permitted.
- func (evex evexBits) BroadcastEnabled() bool {
- return evex.b2&evexBcst != 0
- }
- // ZeroingEnabled reports whether Z suffix is permitted.
- func (evex evexBits) ZeroingEnabled() bool {
- return (evex.b2&evexZeroing)>>2 != 0
- }
- // RoundingEnabled reports whether RN_SAE, RZ_SAE, RD_SAE and RU_SAE suffixes
- // are permitted.
- func (evex evexBits) RoundingEnabled() bool {
- return (evex.b2&evexRounding)>>1 != 0
- }
- // SaeEnabled reports whether SAE suffix is permitted.
- func (evex evexBits) SaeEnabled() bool {
- return (evex.b2&evexSae)>>0 != 0
- }
- // DispMultiplier returns displacement multiplier that is calculated
- // based on tuple type, EVEX.W and input size.
- // If embedded broadcast is used, bcst should be true.
- func (evex evexBits) DispMultiplier(bcst bool) int32 {
- if bcst {
- switch evex.b2 & evexBcst {
- case evexBcstN4:
- return 4
- case evexBcstN8:
- return 8
- }
- return 1
- }
- switch evex.b2 & evexN {
- case evexN1:
- return 1
- case evexN2:
- return 2
- case evexN4:
- return 4
- case evexN8:
- return 8
- case evexN16:
- return 16
- case evexN32:
- return 32
- case evexN64:
- return 64
- case evexN128:
- return 128
- }
- return 1
- }
- // EVEX is described by using 2-byte sequence.
- // See evexBits for more details.
- const (
- evexW = 0x80 // b1[W... ....]
- evexWIG = 0 << 7
- evexW0 = 0 << 7
- evexW1 = 1 << 7
- evexM = 0x30 // b2[..mm ...]
- evex0F = 1 << 4
- evex0F38 = 2 << 4
- evex0F3A = 3 << 4
- evexL = 0x0C // b1[.... LL..]
- evexLIG = 0 << 2
- evex128 = 0 << 2
- evex256 = 1 << 2
- evex512 = 2 << 2
- evexP = 0x03 // b1[.... ..pp]
- evex66 = 1 << 0
- evexF3 = 2 << 0
- evexF2 = 3 << 0
- // Precalculated Disp8 N value.
- // N acts like a multiplier for 8bit displacement.
- // Note that some N are not used, but their bits are reserved.
- evexN = 0xE0 // b2[NNN. ....]
- evexN1 = 0 << 5
- evexN2 = 1 << 5
- evexN4 = 2 << 5
- evexN8 = 3 << 5
- evexN16 = 4 << 5
- evexN32 = 5 << 5
- evexN64 = 6 << 5
- evexN128 = 7 << 5
- // Disp8 for broadcasts.
- evexBcst = 0x18 // b2[...b b...]
- evexBcstN4 = 1 << 3
- evexBcstN8 = 2 << 3
- // Flags that permit certain AVX512 features.
- // It's semantically illegal to combine evexZeroing and evexSae.
- evexZeroing = 0x4 // b2[.... .Z..]
- evexZeroingEnabled = 1 << 2
- evexRounding = 0x2 // b2[.... ..R.]
- evexRoundingEnabled = 1 << 1
- evexSae = 0x1 // b2[.... ...S]
- evexSaeEnabled = 1 << 0
- )
- // compressedDisp8 calculates EVEX compressed displacement, if applicable.
- func compressedDisp8(disp, elemSize int32) (disp8 byte, ok bool) {
- if disp%elemSize == 0 {
- v := disp / elemSize
- if v >= -128 && v <= 127 {
- return byte(v), true
- }
- }
- return 0, false
- }
- // evexZcase reports whether given Z-case belongs to EVEX group.
- func evexZcase(zcase uint8) bool {
- return zcase > Zevex_first && zcase < Zevex_last
- }
- // evexSuffixBits carries instruction EVEX suffix set flags.
- //
- // Examples:
- // "RU_SAE.Z" => {rounding: 3, zeroing: true}
- // "Z" => {zeroing: true}
- // "BCST" => {broadcast: true}
- // "SAE.Z" => {sae: true, zeroing: true}
- type evexSuffix struct {
- rounding byte
- sae bool
- zeroing bool
- broadcast bool
- }
- // Rounding control values.
- // Match exact value for EVEX.L'L field (with exception of rcUnset).
- const (
- rcRNSAE = 0 // Round towards nearest
- rcRDSAE = 1 // Round towards -Inf
- rcRUSAE = 2 // Round towards +Inf
- rcRZSAE = 3 // Round towards zero
- rcUnset = 4
- )
- // newEVEXSuffix returns proper zero value for evexSuffix.
- func newEVEXSuffix() evexSuffix {
- return evexSuffix{rounding: rcUnset}
- }
- // evexSuffixMap maps obj.X86suffix to its decoded version.
- // Filled during init().
- var evexSuffixMap [255]evexSuffix
- func init() {
- // Decode all valid suffixes for later use.
- for i := range opSuffixTable {
- suffix := newEVEXSuffix()
- parts := strings.Split(opSuffixTable[i], ".")
- for j := range parts {
- switch parts[j] {
- case "Z":
- suffix.zeroing = true
- case "BCST":
- suffix.broadcast = true
- case "SAE":
- suffix.sae = true
- case "RN_SAE":
- suffix.rounding = rcRNSAE
- case "RD_SAE":
- suffix.rounding = rcRDSAE
- case "RU_SAE":
- suffix.rounding = rcRUSAE
- case "RZ_SAE":
- suffix.rounding = rcRZSAE
- }
- }
- evexSuffixMap[i] = suffix
- }
- }
- // toDisp8 tries to convert disp to proper 8-bit displacement value.
- func toDisp8(disp int32, p *obj.Prog, asmbuf *AsmBuf) (disp8 byte, ok bool) {
- if asmbuf.evexflag {
- bcst := evexSuffixMap[p.Scond].broadcast
- elemSize := asmbuf.evex.DispMultiplier(bcst)
- return compressedDisp8(disp, elemSize)
- }
- return byte(disp), disp >= -128 && disp < 128
- }
- // EncodeRegisterRange packs [reg0-reg1] list into 64-bit value that
- // is intended to be stored inside obj.Addr.Offset with TYPE_REGLIST.
- func EncodeRegisterRange(reg0, reg1 int16) int64 {
- return (int64(reg0) << 0) |
- (int64(reg1) << 16) |
- obj.RegListX86Lo
- }
- // decodeRegisterRange unpacks [reg0-reg1] list from 64-bit value created by EncodeRegisterRange.
- func decodeRegisterRange(list int64) (reg0, reg1 int) {
- return int((list >> 0) & 0xFFFF),
- int((list >> 16) & 0xFFFF)
- }
- // ParseSuffix handles the special suffix for the 386/AMD64.
- // Suffix bits are stored into p.Scond.
- //
- // Leading "." in cond is ignored.
- func ParseSuffix(p *obj.Prog, cond string) error {
- cond = strings.TrimPrefix(cond, ".")
- suffix := newOpSuffix(cond)
- if !suffix.IsValid() {
- return inferSuffixError(cond)
- }
- p.Scond = uint8(suffix)
- return nil
- }
- // inferSuffixError returns non-nil error that describes what could be
- // the cause of suffix parse failure.
- //
- // At the point this function is executed there is already assembly error,
- // so we can burn some clocks to construct good error message.
- //
- // Reported issues:
- // - duplicated suffixes
- // - illegal rounding/SAE+broadcast combinations
- // - unknown suffixes
- // - misplaced suffix (e.g. wrong Z suffix position)
- func inferSuffixError(cond string) error {
- suffixSet := make(map[string]bool) // Set for duplicates detection.
- unknownSet := make(map[string]bool) // Set of unknown suffixes.
- hasBcst := false
- hasRoundSae := false
- var msg []string // Error message parts
- suffixes := strings.Split(cond, ".")
- for i, suffix := range suffixes {
- switch suffix {
- case "Z":
- if i != len(suffixes)-1 {
- msg = append(msg, "Z suffix should be the last")
- }
- case "BCST":
- hasBcst = true
- case "SAE", "RN_SAE", "RZ_SAE", "RD_SAE", "RU_SAE":
- hasRoundSae = true
- default:
- if !unknownSet[suffix] {
- msg = append(msg, fmt.Sprintf("unknown suffix %q", suffix))
- }
- unknownSet[suffix] = true
- }
- if suffixSet[suffix] {
- msg = append(msg, fmt.Sprintf("duplicate suffix %q", suffix))
- }
- suffixSet[suffix] = true
- }
- if hasBcst && hasRoundSae {
- msg = append(msg, "can't combine rounding/SAE and broadcast")
- }
- if len(msg) == 0 {
- return errors.New("bad suffix combination")
- }
- return errors.New(strings.Join(msg, "; "))
- }
- // opSuffixTable is a complete list of possible opcode suffix combinations.
- // It "maps" uint8 suffix bits to their string representation.
- // With the exception of first and last elements, order is not important.
- var opSuffixTable = [...]string{
- "", // Map empty suffix to empty string.
- "Z",
- "SAE",
- "SAE.Z",
- "RN_SAE",
- "RZ_SAE",
- "RD_SAE",
- "RU_SAE",
- "RN_SAE.Z",
- "RZ_SAE.Z",
- "RD_SAE.Z",
- "RU_SAE.Z",
- "BCST",
- "BCST.Z",
- "<bad suffix>",
- }
- // opSuffix represents instruction opcode suffix.
- // Compound (multi-part) suffixes expressed with single opSuffix value.
- //
- // uint8 type is used to fit obj.Prog.Scond.
- type opSuffix uint8
- // badOpSuffix is used to represent all invalid suffix combinations.
- const badOpSuffix = opSuffix(len(opSuffixTable) - 1)
- // newOpSuffix returns opSuffix object that matches suffixes string.
- //
- // If no matching suffix is found, special "invalid" suffix is returned.
- // Use IsValid method to check against this case.
- func newOpSuffix(suffixes string) opSuffix {
- for i := range opSuffixTable {
- if opSuffixTable[i] == suffixes {
- return opSuffix(i)
- }
- }
- return badOpSuffix
- }
- // IsValid reports whether suffix is valid.
- // Empty suffixes are valid.
- func (suffix opSuffix) IsValid() bool {
- return suffix != badOpSuffix
- }
- // String returns suffix printed representation.
- //
- // It matches the string that was used to create suffix with NewX86Suffix()
- // for valid suffixes.
- // For all invalid suffixes, special marker is returned.
- func (suffix opSuffix) String() string {
- return opSuffixTable[suffix]
- }
|