123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- // Copyright 2013 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package obj
- import (
- "github.com/twitchyliquid64/golang-asm/goobj"
- "encoding/binary"
- "log"
- )
- // funcpctab writes to dst a pc-value table mapping the code in func to the values
- // returned by valfunc parameterized by arg. The invocation of valfunc to update the
- // current value is, for each p,
- //
- // val = valfunc(func, val, p, 0, arg);
- // record val as value at p->pc;
- // val = valfunc(func, val, p, 1, arg);
- //
- // where func is the function, val is the current value, p is the instruction being
- // considered, and arg can be used to further parameterize valfunc.
- func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) {
- dbg := desc == ctxt.Debugpcln
- dst.P = dst.P[:0]
- if dbg {
- ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc)
- }
- val := int32(-1)
- oldval := val
- if func_.Func.Text == nil {
- return
- }
- pc := func_.Func.Text.Pc
- if dbg {
- ctxt.Logf("%6x %6d %v\n", uint64(pc), val, func_.Func.Text)
- }
- buf := make([]byte, binary.MaxVarintLen32)
- started := false
- for p := func_.Func.Text; p != nil; p = p.Link {
- // Update val. If it's not changing, keep going.
- val = valfunc(ctxt, func_, val, p, 0, arg)
- if val == oldval && started {
- val = valfunc(ctxt, func_, val, p, 1, arg)
- if dbg {
- ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
- }
- continue
- }
- // If the pc of the next instruction is the same as the
- // pc of this instruction, this instruction is not a real
- // instruction. Keep going, so that we only emit a delta
- // for a true instruction boundary in the program.
- if p.Link != nil && p.Link.Pc == p.Pc {
- val = valfunc(ctxt, func_, val, p, 1, arg)
- if dbg {
- ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
- }
- continue
- }
- // The table is a sequence of (value, pc) pairs, where each
- // pair states that the given value is in effect from the current position
- // up to the given pc, which becomes the new current position.
- // To generate the table as we scan over the program instructions,
- // we emit a "(value" when pc == func->value, and then
- // each time we observe a change in value we emit ", pc) (value".
- // When the scan is over, we emit the closing ", pc)".
- //
- // The table is delta-encoded. The value deltas are signed and
- // transmitted in zig-zag form, where a complement bit is placed in bit 0,
- // and the pc deltas are unsigned. Both kinds of deltas are sent
- // as variable-length little-endian base-128 integers,
- // where the 0x80 bit indicates that the integer continues.
- if dbg {
- ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p)
- }
- if started {
- pcdelta := (p.Pc - pc) / int64(ctxt.Arch.MinLC)
- n := binary.PutUvarint(buf, uint64(pcdelta))
- dst.P = append(dst.P, buf[:n]...)
- pc = p.Pc
- }
- delta := val - oldval
- n := binary.PutVarint(buf, int64(delta))
- dst.P = append(dst.P, buf[:n]...)
- oldval = val
- started = true
- val = valfunc(ctxt, func_, val, p, 1, arg)
- }
- if started {
- if dbg {
- ctxt.Logf("%6x done\n", uint64(func_.Func.Text.Pc+func_.Size))
- }
- v := (func_.Size - pc) / int64(ctxt.Arch.MinLC)
- if v < 0 {
- ctxt.Diag("negative pc offset: %v", v)
- }
- n := binary.PutUvarint(buf, uint64(v))
- dst.P = append(dst.P, buf[:n]...)
- // add terminating varint-encoded 0, which is just 0
- dst.P = append(dst.P, 0)
- }
- if dbg {
- ctxt.Logf("wrote %d bytes to %p\n", len(dst.P), dst)
- for _, p := range dst.P {
- ctxt.Logf(" %02x", p)
- }
- ctxt.Logf("\n")
- }
- }
- // pctofileline computes either the file number (arg == 0)
- // or the line number (arg == 1) to use at p.
- // Because p.Pos applies to p, phase == 0 (before p)
- // takes care of the update.
- func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
- if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 {
- return oldval
- }
- f, l := getFileIndexAndLine(ctxt, p.Pos)
- if arg == nil {
- return l
- }
- pcln := arg.(*Pcln)
- pcln.UsedFiles[goobj.CUFileIndex(f)] = struct{}{}
- return int32(f)
- }
- // pcinlineState holds the state used to create a function's inlining
- // tree and the PC-value table that maps PCs to nodes in that tree.
- type pcinlineState struct {
- globalToLocal map[int]int
- localTree InlTree
- }
- // addBranch adds a branch from the global inlining tree in ctxt to
- // the function's local inlining tree, returning the index in the local tree.
- func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int {
- if globalIndex < 0 {
- return -1
- }
- localIndex, ok := s.globalToLocal[globalIndex]
- if ok {
- return localIndex
- }
- // Since tracebacks don't include column information, we could
- // use one node for multiple calls of the same function on the
- // same line (e.g., f(x) + f(y)). For now, we use one node for
- // each inlined call.
- call := ctxt.InlTree.nodes[globalIndex]
- call.Parent = s.addBranch(ctxt, call.Parent)
- localIndex = len(s.localTree.nodes)
- s.localTree.nodes = append(s.localTree.nodes, call)
- s.globalToLocal[globalIndex] = localIndex
- return localIndex
- }
- func (s *pcinlineState) setParentPC(ctxt *Link, globalIndex int, pc int32) {
- localIndex, ok := s.globalToLocal[globalIndex]
- if !ok {
- // We know where to unwind to when we need to unwind a body identified
- // by globalIndex. But there may be no instructions generated by that
- // body (it's empty, or its instructions were CSEd with other things, etc.).
- // In that case, we don't need an unwind entry.
- // TODO: is this really right? Seems to happen a whole lot...
- return
- }
- s.localTree.setParentPC(localIndex, pc)
- }
- // pctoinline computes the index into the local inlining tree to use at p.
- // If p is not the result of inlining, pctoinline returns -1. Because p.Pos
- // applies to p, phase == 0 (before p) takes care of the update.
- func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
- if phase == 1 {
- return oldval
- }
- posBase := ctxt.PosTable.Pos(p.Pos).Base()
- if posBase == nil {
- return -1
- }
- globalIndex := posBase.InliningIndex()
- if globalIndex < 0 {
- return -1
- }
- if s.globalToLocal == nil {
- s.globalToLocal = make(map[int]int)
- }
- return int32(s.addBranch(ctxt, globalIndex))
- }
- // pctospadj computes the sp adjustment in effect.
- // It is oldval plus any adjustment made by p itself.
- // The adjustment by p takes effect only after p, so we
- // apply the change during phase == 1.
- func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
- if oldval == -1 { // starting
- oldval = 0
- }
- if phase == 0 {
- return oldval
- }
- if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
- ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
- ctxt.DiagFlush()
- log.Fatalf("bad code")
- }
- return oldval + p.Spadj
- }
- // pctopcdata computes the pcdata value in effect at p.
- // A PCDATA instruction sets the value in effect at future
- // non-PCDATA instructions.
- // Since PCDATA instructions have no width in the final code,
- // it does not matter which phase we use for the update.
- func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
- if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
- return oldval
- }
- if int64(int32(p.To.Offset)) != p.To.Offset {
- ctxt.Diag("overflow in PCDATA instruction: %v", p)
- ctxt.DiagFlush()
- log.Fatalf("bad code")
- }
- return int32(p.To.Offset)
- }
- func linkpcln(ctxt *Link, cursym *LSym) {
- pcln := &cursym.Func.Pcln
- pcln.UsedFiles = make(map[goobj.CUFileIndex]struct{})
- npcdata := 0
- nfuncdata := 0
- for p := cursym.Func.Text; p != nil; p = p.Link {
- // Find the highest ID of any used PCDATA table. This ignores PCDATA table
- // that consist entirely of "-1", since that's the assumed default value.
- // From.Offset is table ID
- // To.Offset is data
- if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed
- npcdata = int(p.From.Offset + 1)
- }
- // Find the highest ID of any FUNCDATA table.
- // From.Offset is table ID
- if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
- nfuncdata = int(p.From.Offset + 1)
- }
- }
- pcln.Pcdata = make([]Pcdata, npcdata)
- pcln.Pcdata = pcln.Pcdata[:npcdata]
- pcln.Funcdata = make([]*LSym, nfuncdata)
- pcln.Funcdataoff = make([]int64, nfuncdata)
- pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]
- funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil)
- funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln)
- funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil)
- // Check that all the Progs used as inline markers are still reachable.
- // See issue #40473.
- inlMarkProgs := make(map[*Prog]struct{}, len(cursym.Func.InlMarks))
- for _, inlMark := range cursym.Func.InlMarks {
- inlMarkProgs[inlMark.p] = struct{}{}
- }
- for p := cursym.Func.Text; p != nil; p = p.Link {
- if _, ok := inlMarkProgs[p]; ok {
- delete(inlMarkProgs, p)
- }
- }
- if len(inlMarkProgs) > 0 {
- ctxt.Diag("one or more instructions used as inline markers are no longer reachable")
- }
- pcinlineState := new(pcinlineState)
- funcpctab(ctxt, &pcln.Pcinline, cursym, "pctoinline", pcinlineState.pctoinline, nil)
- for _, inlMark := range cursym.Func.InlMarks {
- pcinlineState.setParentPC(ctxt, int(inlMark.id), int32(inlMark.p.Pc))
- }
- pcln.InlTree = pcinlineState.localTree
- if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 {
- ctxt.Logf("-- inlining tree for %s:\n", cursym)
- dumpInlTree(ctxt, pcln.InlTree)
- ctxt.Logf("--\n")
- }
- // tabulate which pc and func data we have.
- havepc := make([]uint32, (npcdata+31)/32)
- havefunc := make([]uint32, (nfuncdata+31)/32)
- for p := cursym.Func.Text; p != nil; p = p.Link {
- if p.As == AFUNCDATA {
- if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
- ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
- }
- havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
- }
- if p.As == APCDATA && p.To.Offset != -1 {
- havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
- }
- }
- // pcdata.
- for i := 0; i < npcdata; i++ {
- if (havepc[i/32]>>uint(i%32))&1 == 0 {
- continue
- }
- funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
- }
- // funcdata
- if nfuncdata > 0 {
- for p := cursym.Func.Text; p != nil; p = p.Link {
- if p.As != AFUNCDATA {
- continue
- }
- i := int(p.From.Offset)
- pcln.Funcdataoff[i] = p.To.Offset
- if p.To.Type != TYPE_CONST {
- // TODO: Dedup.
- //funcdata_bytes += p->to.sym->size;
- pcln.Funcdata[i] = p.To.Sym
- }
- }
- }
- }
- // PCIter iterates over encoded pcdata tables.
- type PCIter struct {
- p []byte
- PC uint32
- NextPC uint32
- PCScale uint32
- Value int32
- start bool
- Done bool
- }
- // newPCIter creates a PCIter with a scale factor for the PC step size.
- func NewPCIter(pcScale uint32) *PCIter {
- it := new(PCIter)
- it.PCScale = pcScale
- return it
- }
- // Next advances it to the Next pc.
- func (it *PCIter) Next() {
- it.PC = it.NextPC
- if it.Done {
- return
- }
- if len(it.p) == 0 {
- it.Done = true
- return
- }
- // Value delta
- val, n := binary.Varint(it.p)
- if n <= 0 {
- log.Fatalf("bad Value varint in pciterNext: read %v", n)
- }
- it.p = it.p[n:]
- if val == 0 && !it.start {
- it.Done = true
- return
- }
- it.start = false
- it.Value += int32(val)
- // pc delta
- pc, n := binary.Uvarint(it.p)
- if n <= 0 {
- log.Fatalf("bad pc varint in pciterNext: read %v", n)
- }
- it.p = it.p[n:]
- it.NextPC = it.PC + uint32(pc)*it.PCScale
- }
- // init prepares it to iterate over p,
- // and advances it to the first pc.
- func (it *PCIter) Init(p []byte) {
- it.p = p
- it.PC = 0
- it.NextPC = 0
- it.Value = -1
- it.start = true
- it.Done = false
- it.Next()
- }
|