| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068 | // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of// this source code is governed by a BSD-style license that can be found in// the LICENSE file.//// Package excelize providing a set of functions that allow you to write to// and read from XLSX / XLSM / XLTM files. Supports reading and writing// spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports// complex components by high compatibility, and provided streaming API for// generating or reading data from a worksheet with huge amounts of data. This// library needs Go version 1.15 or later.package excelizeimport (	"bytes"	"container/list"	"errors"	"fmt"	"math"	"math/cmplx"	"math/rand"	"net/url"	"reflect"	"regexp"	"sort"	"strconv"	"strings"	"time"	"unicode"	"unsafe"	"github.com/xuri/efp"	"golang.org/x/text/language"	"golang.org/x/text/message")// Excel formula errorsconst (	formulaErrorDIV         = "#DIV/0!"	formulaErrorNAME        = "#NAME?"	formulaErrorNA          = "#N/A"	formulaErrorNUM         = "#NUM!"	formulaErrorVALUE       = "#VALUE!"	formulaErrorREF         = "#REF!"	formulaErrorNULL        = "#NULL"	formulaErrorSPILL       = "#SPILL!"	formulaErrorCALC        = "#CALC!"	formulaErrorGETTINGDATA = "#GETTING_DATA")// Numeric precision correct numeric values as legacy Excel application// https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the// top figure the fraction 1/9000 in Excel is displayed. Although this number// has a decimal representation that is an infinite string of ones, Excel// displays only the leading 15 figures. In the second line, the number one// is added to the fraction, and again Excel displays only 15 figures.const numericPrecision = 1000000000000000const maxFinancialIterations = 128const financialPercision = 1.0e-08// cellRef defines the structure of a cell reference.type cellRef struct {	Col   int	Row   int	Sheet string}// cellRef defines the structure of a cell range.type cellRange struct {	From cellRef	To   cellRef}// formula criteria condition enumeration.const (	_ byte = iota	criteriaEq	criteriaLe	criteriaGe	criteriaL	criteriaG	criteriaBeg	criteriaEnd	criteriaErr)// formulaCriteria defined formula criteria parser result.type formulaCriteria struct {	Type      byte	Condition string}// ArgType is the type if formula argument type.type ArgType byte// Formula argument types enumeration.const (	ArgUnknown ArgType = iota	ArgNumber	ArgString	ArgList	ArgMatrix	ArgError	ArgEmpty)// formulaArg is the argument of a formula or function.type formulaArg struct {	SheetName            string	Number               float64	String               string	List                 []formulaArg	Matrix               [][]formulaArg	Boolean              bool	Error                string	Type                 ArgType	cellRefs, cellRanges *list.List}// Value returns a string data type of the formula argument.func (fa formulaArg) Value() (value string) {	switch fa.Type {	case ArgNumber:		if fa.Boolean {			if fa.Number == 0 {				return "FALSE"			}			return "TRUE"		}		return fmt.Sprintf("%g", fa.Number)	case ArgString:		return fa.String	case ArgError:		return fa.Error	}	return}// ToNumber returns a formula argument with number data type.func (fa formulaArg) ToNumber() formulaArg {	var n float64	var err error	switch fa.Type {	case ArgString:		n, err = strconv.ParseFloat(fa.String, 64)		if err != nil {			return newErrorFormulaArg(formulaErrorVALUE, err.Error())		}	case ArgNumber:		n = fa.Number	}	return newNumberFormulaArg(n)}// ToBool returns a formula argument with boolean data type.func (fa formulaArg) ToBool() formulaArg {	var b bool	var err error	switch fa.Type {	case ArgString:		b, err = strconv.ParseBool(fa.String)		if err != nil {			return newErrorFormulaArg(formulaErrorVALUE, err.Error())		}	case ArgNumber:		if fa.Boolean && fa.Number == 1 {			b = true		}	}	return newBoolFormulaArg(b)}// ToList returns a formula argument with array data type.func (fa formulaArg) ToList() []formulaArg {	switch fa.Type {	case ArgMatrix:		list := []formulaArg{}		for _, row := range fa.Matrix {			list = append(list, row...)		}		return list	case ArgList:		return fa.List	case ArgNumber, ArgString, ArgError, ArgUnknown:		return []formulaArg{fa}	}	return nil}// formulaFuncs is the type of the formula functions.type formulaFuncs struct {	f           *File	sheet, cell string}// tokenPriority defined basic arithmetic operator priority.var tokenPriority = map[string]int{	"^":  5,	"*":  4,	"/":  4,	"+":  3,	"-":  3,	"=":  2,	"<>": 2,	"<":  2,	"<=": 2,	">":  2,	">=": 2,	"&":  1,}// CalcCellValue provides a function to get calculated cell value. This// feature is currently in working processing. Array formula, table formula// and some other formulas are not supported currently.//// Supported formula functions:////    ABS//    ACOS//    ACOSH//    ACOT//    ACOTH//    AND//    ARABIC//    ASIN//    ASINH//    ATAN//    ATAN2//    ATANH//    AVERAGE//    AVERAGEA//    BASE//    BESSELI//    BESSELJ//    BESSELK//    BESSELY//    BIN2DEC//    BIN2HEX//    BIN2OCT//    BITAND//    BITLSHIFT//    BITOR//    BITRSHIFT//    BITXOR//    CEILING//    CEILING.MATH//    CEILING.PRECISE//    CHAR//    CHOOSE//    CLEAN//    CODE//    COLUMN//    COLUMNS//    COMBIN//    COMBINA//    COMPLEX//    CONCAT//    CONCATENATE//    COS//    COSH//    COT//    COTH//    COUNT//    COUNTA//    COUNTBLANK//    CSC//    CSCH//    CUMIPMT//    CUMPRINC//    DATE//    DATEDIF//    DB//    DDB//    DEC2BIN//    DEC2HEX//    DEC2OCT//    DECIMAL//    DEGREES//    DOLLARDE//    DOLLARFR//    EFFECT//    ENCODEURL//    EVEN//    EXACT//    EXP//    FACT//    FACTDOUBLE//    FALSE//    FIND//    FINDB//    FISHER//    FISHERINV//    FIXED//    FLOOR//    FLOOR.MATH//    FLOOR.PRECISE//    FV//    FVSCHEDULE//    GAMMA//    GAMMALN//    GCD//    HARMEAN//    HEX2BIN//    HEX2DEC//    HEX2OCT//    HLOOKUP//    IF//    IFERROR//    IMABS//    IMAGINARY//    IMARGUMENT//    IMCONJUGATE//    IMCOS//    IMCOSH//    IMCOT//    IMCSC//    IMCSCH//    IMDIV//    IMEXP//    IMLN//    IMLOG10//    IMLOG2//    IMPOWER//    IMPRODUCT//    IMREAL//    IMSEC//    IMSECH//    IMSIN//    IMSINH//    IMSQRT//    IMSUB//    IMSUM//    IMTAN//    INT//    IPMT//    IRR//    ISBLANK//    ISERR//    ISERROR//    ISEVEN//    ISNA//    ISNONTEXT//    ISNUMBER//    ISODD//    ISTEXT//    ISO.CEILING//    ISPMT//    KURT//    LARGE//    LCM//    LEFT//    LEFTB//    LEN//    LENB//    LN//    LOG//    LOG10//    LOOKUP//    LOWER//    MAX//    MDETERM//    MEDIAN//    MID//    MIDB//    MIN//    MINA//    MIRR//    MOD//    MROUND//    MULTINOMIAL//    MUNIT//    N//    NA//    NOMINAL//    NORM.DIST//    NORMDIST//    NORM.INV//    NORMINV//    NORM.S.DIST//    NORMSDIST//    NORM.S.INV//    NORMSINV//    NOT//    NOW//    NPER//    NPV//    OCT2BIN//    OCT2DEC//    OCT2HEX//    ODD//    OR//    PDURATION//    PERCENTILE.INC//    PERCENTILE//    PERMUT//    PERMUTATIONA//    PI//    PMT//    POISSON.DIST//    POISSON//    POWER//    PPMT//    PRODUCT//    PROPER//    QUARTILE//    QUARTILE.INC//    QUOTIENT//    RADIANS//    RAND//    RANDBETWEEN//    REPLACE//    REPLACEB//    REPT//    RIGHT//    RIGHTB//    ROMAN//    ROUND//    ROUNDDOWN//    ROUNDUP//    ROW//    ROWS//    SEC//    SECH//    SHEET//    SIGN//    SIN//    SINH//    SKEW//    SMALL//    SQRT//    SQRTPI//    STDEV//    STDEV.S//    STDEVA//    SUBSTITUTE//    SUM//    SUMIF//    SUMSQ//    T//    TAN//    TANH//    TODAY//    TRIM//    TRUE//    TRUNC//    UNICHAR//    UNICODE//    UPPER//    VAR.P//    VARP//    VLOOKUP//func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {	var (		formula string		token   efp.Token	)	if formula, err = f.GetCellFormula(sheet, cell); err != nil {		return	}	ps := efp.ExcelParser()	tokens := ps.Parse(formula)	if tokens == nil {		return	}	if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {		return	}	result = token.TValue	isNum, precision := isNumeric(result)	if isNum && precision > 15 {		num, _ := roundPrecision(result)		result = strings.ToUpper(num)	}	return}// getPriority calculate arithmetic operator priority.func getPriority(token efp.Token) (pri int) {	pri = tokenPriority[token.TValue]	if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {		pri = 6	}	if isBeginParenthesesToken(token) { // (		pri = 0	}	return}// newNumberFormulaArg constructs a number formula argument.func newNumberFormulaArg(n float64) formulaArg {	if math.IsNaN(n) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return formulaArg{Type: ArgNumber, Number: n}}// newStringFormulaArg constructs a string formula argument.func newStringFormulaArg(s string) formulaArg {	return formulaArg{Type: ArgString, String: s}}// newMatrixFormulaArg constructs a matrix formula argument.func newMatrixFormulaArg(m [][]formulaArg) formulaArg {	return formulaArg{Type: ArgMatrix, Matrix: m}}// newListFormulaArg create a list formula argument.func newListFormulaArg(l []formulaArg) formulaArg {	return formulaArg{Type: ArgList, List: l}}// newBoolFormulaArg constructs a boolean formula argument.func newBoolFormulaArg(b bool) formulaArg {	var n float64	if b {		n = 1	}	return formulaArg{Type: ArgNumber, Number: n, Boolean: true}}// newErrorFormulaArg create an error formula argument of a given type with a// specified error message.func newErrorFormulaArg(formulaError, msg string) formulaArg {	return formulaArg{Type: ArgError, String: formulaError, Error: msg}}// newEmptyFormulaArg create an empty formula argument.func newEmptyFormulaArg() formulaArg {	return formulaArg{Type: ArgEmpty}}// evalInfixExp evaluate syntax analysis by given infix expression after// lexical analysis. Evaluate an infix expression containing formulas by// stacks:////    opd  - Operand//    opt  - Operator//    opf  - Operation formula//    opfd - Operand of the operation formula//    opft - Operator of the operation formula//    args - Arguments list of the operation formula//// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union//func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {	var err error	opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()	for i := 0; i < len(tokens); i++ {		token := tokens[i]		// out of function stack		if opfStack.Len() == 0 {			if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {				return efp.Token{}, err			}		}		// function start		if isFunctionStartToken(token) {			opfStack.Push(token)			argsStack.Push(list.New().Init())			continue		}		// in function stack, walk 2 token at once		if opfStack.Len() > 0 {			var nextToken efp.Token			if i+1 < len(tokens) {				nextToken = tokens[i+1]			}			// current token is args or range, skip next token, order required: parse reference first			if token.TSubType == efp.TokenSubTypeRange {				if !opftStack.Empty() {					// parse reference: must reference at here					result, err := f.parseReference(sheet, token.TValue)					if err != nil {						return efp.Token{TValue: formulaErrorNAME}, err					}					if result.Type != ArgString {						return efp.Token{}, errors.New(formulaErrorVALUE)					}					opfdStack.Push(efp.Token{						TType:    efp.TokenTypeOperand,						TSubType: efp.TokenSubTypeNumber,						TValue:   result.String,					})					continue				}				if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {					// parse reference: reference or range at here					refTo := f.getDefinedNameRefTo(token.TValue, sheet)					if refTo != "" {						token.TValue = refTo					}					result, err := f.parseReference(sheet, token.TValue)					if err != nil {						return efp.Token{TValue: formulaErrorNAME}, err					}					if result.Type == ArgUnknown {						return efp.Token{}, errors.New(formulaErrorVALUE)					}					argsStack.Peek().(*list.List).PushBack(result)					continue				}			}			// check current token is opft			if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {				return efp.Token{}, err			}			// current token is arg			if token.TType == efp.TokenTypeArgument {				for !opftStack.Empty() {					// calculate trigger					topOpt := opftStack.Peek().(efp.Token)					if err := calculate(opfdStack, topOpt); err != nil {						argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))					}					opftStack.Pop()				}				if !opfdStack.Empty() {					argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))				}				continue			}			// current token is logical			if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {				argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))			}			if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {				return efp.Token{}, err			}		}	}	for optStack.Len() != 0 {		topOpt := optStack.Peek().(efp.Token)		if err = calculate(opdStack, topOpt); err != nil {			return efp.Token{}, err		}		optStack.Pop()	}	if opdStack.Len() == 0 {		return efp.Token{}, ErrInvalidFormula	}	return opdStack.Peek().(efp.Token), err}// evalInfixExpFunc evaluate formula function in the infix expression.func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {	if !isFunctionStopToken(token) {		return nil	}	// current token is function stop	for !opftStack.Empty() {		// calculate trigger		topOpt := opftStack.Peek().(efp.Token)		if err := calculate(opfdStack, topOpt); err != nil {			return err		}		opftStack.Pop()	}	// push opfd to args	if opfdStack.Len() > 0 {		argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))	}	// call formula function to evaluate	arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(		"_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),		[]reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})	if arg.Type == ArgError && opfStack.Len() == 1 {		return errors.New(arg.Value())	}	argsStack.Pop()	opfStack.Pop()	if opfStack.Len() > 0 { // still in function stack		if nextToken.TType == efp.TokenTypeOperatorInfix {			// mathematics calculate in formula function			opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})		} else {			argsStack.Peek().(*list.List).PushBack(arg)		}	} else {		opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	}	return nil}// calcPow evaluate exponentiation arithmetic operations.func calcPow(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	result := math.Pow(lOpdVal, rOpdVal)	opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcEq evaluate equal arithmetic operations.func calcEq(rOpd, lOpd string, opdStack *Stack) error {	opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcNEq evaluate not equal arithmetic operations.func calcNEq(rOpd, lOpd string, opdStack *Stack) error {	opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcL evaluate less than arithmetic operations.func calcL(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcLe evaluate less than or equal arithmetic operations.func calcLe(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcG evaluate greater than or equal arithmetic operations.func calcG(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcGe evaluate greater than or equal arithmetic operations.func calcGe(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcSplice evaluate splice '&' operations.func calcSplice(rOpd, lOpd string, opdStack *Stack) error {	opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcAdd evaluate addition arithmetic operations.func calcAdd(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	result := lOpdVal + rOpdVal	opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcSubtract evaluate subtraction arithmetic operations.func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	result := lOpdVal - rOpdVal	opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcMultiply evaluate multiplication arithmetic operations.func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	result := lOpdVal * rOpdVal	opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calcDiv evaluate division arithmetic operations.func calcDiv(rOpd, lOpd string, opdStack *Stack) error {	lOpdVal, err := strconv.ParseFloat(lOpd, 64)	if err != nil {		return err	}	rOpdVal, err := strconv.ParseFloat(rOpd, 64)	if err != nil {		return err	}	result := lOpdVal / rOpdVal	if rOpdVal == 0 {		return errors.New(formulaErrorDIV)	}	opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	return nil}// calculate evaluate basic arithmetic operations.func calculate(opdStack *Stack, opt efp.Token) error {	if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {		if opdStack.Len() < 1 {			return ErrInvalidFormula		}		opd := opdStack.Pop().(efp.Token)		opdVal, err := strconv.ParseFloat(opd.TValue, 64)		if err != nil {			return err		}		result := 0 - opdVal		opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})	}	tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{		"^":  calcPow,		"*":  calcMultiply,		"/":  calcDiv,		"+":  calcAdd,		"=":  calcEq,		"<>": calcNEq,		"<":  calcL,		"<=": calcLe,		">":  calcG,		">=": calcGe,		"&":  calcSplice,	}	if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {		if opdStack.Len() < 2 {			return ErrInvalidFormula		}		rOpd := opdStack.Pop().(efp.Token)		lOpd := opdStack.Pop().(efp.Token)		if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {			return err		}	}	fn, ok := tokenCalcFunc[opt.TValue]	if ok {		if opdStack.Len() < 2 {			return ErrInvalidFormula		}		rOpd := opdStack.Pop().(efp.Token)		lOpd := opdStack.Pop().(efp.Token)		if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {			return err		}	}	return nil}// parseOperatorPrefixToken parse operator prefix token.func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {	if optStack.Len() == 0 {		optStack.Push(token)	} else {		tokenPriority := getPriority(token)		topOpt := optStack.Peek().(efp.Token)		topOptPriority := getPriority(topOpt)		if tokenPriority > topOptPriority {			optStack.Push(token)		} else {			for tokenPriority <= topOptPriority {				optStack.Pop()				if err = calculate(opdStack, topOpt); err != nil {					return				}				if optStack.Len() > 0 {					topOpt = optStack.Peek().(efp.Token)					topOptPriority = getPriority(topOpt)					continue				}				break			}			optStack.Push(token)		}	}	return}// isFunctionStartToken determine if the token is function stop.func isFunctionStartToken(token efp.Token) bool {	return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart}// isFunctionStopToken determine if the token is function stop.func isFunctionStopToken(token efp.Token) bool {	return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop}// isBeginParenthesesToken determine if the token is begin parentheses: (.func isBeginParenthesesToken(token efp.Token) bool {	return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart}// isEndParenthesesToken determine if the token is end parentheses: ).func isEndParenthesesToken(token efp.Token) bool {	return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop}// isOperatorPrefixToken determine if the token is parse operator prefix// token.func isOperatorPrefixToken(token efp.Token) bool {	_, ok := tokenPriority[token.TValue]	return (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix)}// getDefinedNameRefTo convert defined name to reference range.func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {	var workbookRefTo, worksheetRefTo string	for _, definedName := range f.GetDefinedName() {		if definedName.Name == definedNameName {			// worksheet scope takes precedence over scope workbook when both definedNames exist			if definedName.Scope == "Workbook" {				workbookRefTo = definedName.RefersTo			}			if definedName.Scope == currentSheet {				worksheetRefTo = definedName.RefersTo			}		}	}	refTo = workbookRefTo	if worksheetRefTo != "" {		refTo = worksheetRefTo	}	return}// parseToken parse basic arithmetic operator priority and evaluate based on// operators and operands.func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {	// parse reference: must reference at here	if token.TSubType == efp.TokenSubTypeRange {		refTo := f.getDefinedNameRefTo(token.TValue, sheet)		if refTo != "" {			token.TValue = refTo		}		result, err := f.parseReference(sheet, token.TValue)		if err != nil {			return errors.New(formulaErrorNAME)		}		if result.Type != ArgString {			return errors.New(formulaErrorVALUE)		}		token.TValue = result.String		token.TType = efp.TokenTypeOperand		token.TSubType = efp.TokenSubTypeNumber	}	if isOperatorPrefixToken(token) {		if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {			return err		}	}	if isBeginParenthesesToken(token) { // (		optStack.Push(token)	}	if isEndParenthesesToken(token) { // )		for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (			topOpt := optStack.Peek().(efp.Token)			if err := calculate(opdStack, topOpt); err != nil {				return err			}			optStack.Pop()		}		optStack.Pop()	}	// opd	if token.TType == efp.TokenTypeOperand && (token.TSubType == efp.TokenSubTypeNumber || token.TSubType == efp.TokenSubTypeText) {		opdStack.Push(token)	}	return nil}// parseReference parse reference and extract values by given reference// characters and default sheet name.func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {	reference = strings.Replace(reference, "$", "", -1)	refs, cellRanges, cellRefs := list.New(), list.New(), list.New()	for _, ref := range strings.Split(reference, ":") {		tokens := strings.Split(ref, "!")		cr := cellRef{}		if len(tokens) == 2 { // have a worksheet name			cr.Sheet = tokens[0]			// cast to cell coordinates			if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {				// cast to column				if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {					// cast to row					if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {						err = newInvalidColumnNameError(tokens[1])						return					}					cr.Col = TotalColumns				}			}			if refs.Len() > 0 {				e := refs.Back()				cellRefs.PushBack(e.Value.(cellRef))				refs.Remove(e)			}			refs.PushBack(cr)			continue		}		// cast to cell coordinates		if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {			// cast to column			if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {				// cast to row				if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {					err = newInvalidColumnNameError(tokens[0])					return				}				cr.Col = TotalColumns			}			cellRanges.PushBack(cellRange{				From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},				To:   cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},			})			cellRefs.Init()			arg, err = f.rangeResolver(cellRefs, cellRanges)			return		}		e := refs.Back()		if e == nil {			cr.Sheet = sheet			refs.PushBack(cr)			continue		}		cellRanges.PushBack(cellRange{			From: e.Value.(cellRef),			To:   cr,		})		refs.Remove(e)	}	if refs.Len() > 0 {		e := refs.Back()		cellRefs.PushBack(e.Value.(cellRef))		refs.Remove(e)	}	arg, err = f.rangeResolver(cellRefs, cellRanges)	return}// prepareValueRange prepare value range.func prepareValueRange(cr cellRange, valueRange []int) {	if cr.From.Row < valueRange[0] || valueRange[0] == 0 {		valueRange[0] = cr.From.Row	}	if cr.From.Col < valueRange[2] || valueRange[2] == 0 {		valueRange[2] = cr.From.Col	}	if cr.To.Row > valueRange[1] || valueRange[1] == 0 {		valueRange[1] = cr.To.Row	}	if cr.To.Col > valueRange[3] || valueRange[3] == 0 {		valueRange[3] = cr.To.Col	}}// prepareValueRef prepare value reference.func prepareValueRef(cr cellRef, valueRange []int) {	if cr.Row < valueRange[0] || valueRange[0] == 0 {		valueRange[0] = cr.Row	}	if cr.Col < valueRange[2] || valueRange[2] == 0 {		valueRange[2] = cr.Col	}	if cr.Row > valueRange[1] || valueRange[1] == 0 {		valueRange[1] = cr.Row	}	if cr.Col > valueRange[3] || valueRange[3] == 0 {		valueRange[3] = cr.Col	}}// rangeResolver extract value as string from given reference and range list.// This function will not ignore the empty cell. For example, A1:A2:A2:B3 will// be reference A1:B3.func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {	arg.cellRefs, arg.cellRanges = cellRefs, cellRanges	// value range order: from row, to row, from column, to column	valueRange := []int{0, 0, 0, 0}	var sheet string	// prepare value range	for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {		cr := temp.Value.(cellRange)		if cr.From.Sheet != cr.To.Sheet {			err = errors.New(formulaErrorVALUE)		}		rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}		_ = sortCoordinates(rng)		cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]		prepareValueRange(cr, valueRange)		if cr.From.Sheet != "" {			sheet = cr.From.Sheet		}	}	for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {		cr := temp.Value.(cellRef)		if cr.Sheet != "" {			sheet = cr.Sheet		}		prepareValueRef(cr, valueRange)	}	// extract value from ranges	if cellRanges.Len() > 0 {		arg.Type = ArgMatrix		for row := valueRange[0]; row <= valueRange[1]; row++ {			var matrixRow = []formulaArg{}			for col := valueRange[2]; col <= valueRange[3]; col++ {				var cell, value string				if cell, err = CoordinatesToCellName(col, row); err != nil {					return				}				if value, err = f.GetCellValue(sheet, cell); err != nil {					return				}				matrixRow = append(matrixRow, formulaArg{					String: value,					Type:   ArgString,				})			}			arg.Matrix = append(arg.Matrix, matrixRow)		}		return	}	// extract value from references	for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {		cr := temp.Value.(cellRef)		var cell string		if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {			return		}		if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {			return		}		arg.Type = ArgString	}	return}// callFuncByName calls the no error or only error return function with// reflect by given receiver, name and parameters.func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {	function := reflect.ValueOf(receiver).MethodByName(name)	if function.IsValid() {		rt := function.Call(params)		if len(rt) == 0 {			return		}		arg = rt[0].Interface().(formulaArg)		return	}	return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))}// formulaCriteriaParser parse formula criteria.func formulaCriteriaParser(exp string) (fc *formulaCriteria) {	fc = &formulaCriteria{}	if exp == "" {		return	}	if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {		fc.Type, fc.Condition = criteriaEq, match[1]		return	}	if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {		fc.Type, fc.Condition = criteriaEq, match[1]		return	}	if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {		fc.Type, fc.Condition = criteriaLe, match[1]		return	}	if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {		fc.Type, fc.Condition = criteriaGe, match[1]		return	}	if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {		fc.Type, fc.Condition = criteriaL, match[1]		return	}	if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {		fc.Type, fc.Condition = criteriaG, match[1]		return	}	if strings.Contains(exp, "*") {		if strings.HasPrefix(exp, "*") {			fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")		}		if strings.HasSuffix(exp, "*") {			fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")		}		return	}	fc.Type, fc.Condition = criteriaEq, exp	return}// formulaCriteriaEval evaluate formula criteria expression.func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {	var value, expected float64	var e error	var prepareValue = func(val, cond string) (value float64, expected float64, err error) {		if value, err = strconv.ParseFloat(val, 64); err != nil {			return		}		if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {			return		}		return	}	switch criteria.Type {	case criteriaEq:		return val == criteria.Condition, err	case criteriaLe:		value, expected, e = prepareValue(val, criteria.Condition)		return value <= expected && e == nil, err	case criteriaGe:		value, expected, e = prepareValue(val, criteria.Condition)		return value >= expected && e == nil, err	case criteriaL:		value, expected, e = prepareValue(val, criteria.Condition)		return value < expected && e == nil, err	case criteriaG:		value, expected, e = prepareValue(val, criteria.Condition)		return value > expected && e == nil, err	case criteriaBeg:		return strings.HasPrefix(val, criteria.Condition), err	case criteriaEnd:		return strings.HasSuffix(val, criteria.Condition), err	}	return}// Engineering Functions// BESSELI function the modified Bessel function, which is equivalent to the// Bessel function evaluated for purely imaginary arguments. The syntax of// the Besseli function is:////    BESSELI(x,n)//func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")	}	return fn.bassel(argsList, true)}// BESSELJ function returns the Bessel function, Jn(x), for a specified order// and value of x. The syntax of the function is:////    BESSELJ(x,n)//func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")	}	return fn.bassel(argsList, false)}// bassel is an implementation of the formula function BESSELI and BESSELJ.func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {	x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()	if x.Type != ArgNumber {		return x	}	if n.Type != ArgNumber {		return n	}	max, x1 := 100, x.Number*0.5	x2 := x1 * x1	x1 = math.Pow(x1, n.Number)	n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false	result := x1 / n1	t := result * 0.9	for result != t && max != 0 {		x1 *= x2		n3++		n1 *= n3		n4++		n2 *= n4		t = result		if modfied || add {			result += (x1 / n1 / n2)		} else {			result -= (x1 / n1 / n2)		}		max--		add = !add	}	return newNumberFormulaArg(result)}// BESSELK function calculates the modified Bessel functions, Kn(x), which are// also known as the hyperbolic Bessel Functions. These are the equivalent of// the Bessel functions, evaluated for purely imaginary arguments. The syntax// of the function is:////    BESSELK(x,n)//func (fn *formulaFuncs) BESSELK(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "BESSELK requires 2 numeric arguments")	}	x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()	if x.Type != ArgNumber {		return x	}	if n.Type != ArgNumber {		return n	}	if x.Number <= 0 || n.Number < 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	var result float64	switch math.Floor(n.Number) {	case 0:		result = fn.besselK0(x)	case 1:		result = fn.besselK1(x)	default:		result = fn.besselK2(x, n)	}	return newNumberFormulaArg(result)}// besselK0 is an implementation of the formula function BESSELK.func (fn *formulaFuncs) besselK0(x formulaArg) float64 {	var y float64	if x.Number <= 2 {		n2 := x.Number * 0.5		y = n2 * n2		args := list.New()		args.PushBack(x)		args.PushBack(newNumberFormulaArg(0))		return -math.Log(n2)*fn.BESSELI(args).Number +			(-0.57721566 + y*(0.42278420+y*(0.23069756+y*(0.3488590e-1+y*(0.262698e-2+y*				(0.10750e-3+y*0.74e-5))))))	}	y = 2 / x.Number	return math.Exp(-x.Number) / math.Sqrt(x.Number) *		(1.25331414 + y*(-0.7832358e-1+y*(0.2189568e-1+y*(-0.1062446e-1+y*			(0.587872e-2+y*(-0.251540e-2+y*0.53208e-3))))))}// besselK1 is an implementation of the formula function BESSELK.func (fn *formulaFuncs) besselK1(x formulaArg) float64 {	var n2, y float64	if x.Number <= 2 {		n2 = x.Number * 0.5		y = n2 * n2		args := list.New()		args.PushBack(x)		args.PushBack(newNumberFormulaArg(1))		return math.Log(n2)*fn.BESSELI(args).Number +			(1+y*(0.15443144+y*(-0.67278579+y*(-0.18156897+y*(-0.1919402e-1+y*(-0.110404e-2+y*(-0.4686e-4)))))))/x.Number	}	y = 2 / x.Number	return math.Exp(-x.Number) / math.Sqrt(x.Number) *		(1.25331414 + y*(0.23498619+y*(-0.3655620e-1+y*(0.1504268e-1+y*(-0.780353e-2+y*			(0.325614e-2+y*(-0.68245e-3)))))))}// besselK2 is an implementation of the formula function BESSELK.func (fn *formulaFuncs) besselK2(x, n formulaArg) float64 {	tox, bkm, bk, bkp := 2/x.Number, fn.besselK0(x), fn.besselK1(x), 0.0	for i := 1.0; i < n.Number; i++ {		bkp = bkm + i*tox*bk		bkm = bk		bk = bkp	}	return bk}// BESSELY function returns the Bessel function, Yn(x), (also known as the// Weber function or the Neumann function), for a specified order and value// of x. The syntax of the function is:////    BESSELY(x,n)//func (fn *formulaFuncs) BESSELY(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "BESSELY requires 2 numeric arguments")	}	x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()	if x.Type != ArgNumber {		return x	}	if n.Type != ArgNumber {		return n	}	if x.Number <= 0 || n.Number < 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	var result float64	switch math.Floor(n.Number) {	case 0:		result = fn.besselY0(x)	case 1:		result = fn.besselY1(x)	default:		result = fn.besselY2(x, n)	}	return newNumberFormulaArg(result)}// besselY0 is an implementation of the formula function BESSELY.func (fn *formulaFuncs) besselY0(x formulaArg) float64 {	var y float64	if x.Number < 8 {		y = x.Number * x.Number		f1 := -2957821389.0 + y*(7062834065.0+y*(-512359803.6+y*(10879881.29+y*			(-86327.92757+y*228.4622733))))		f2 := 40076544269.0 + y*(745249964.8+y*(7189466.438+y*			(47447.26470+y*(226.1030244+y))))		args := list.New()		args.PushBack(x)		args.PushBack(newNumberFormulaArg(0))		return f1/f2 + 0.636619772*fn.BESSELJ(args).Number*math.Log(x.Number)	}	z := 8.0 / x.Number	y = z * z	xx := x.Number - 0.785398164	f1 := 1 + y*(-0.1098628627e-2+y*(0.2734510407e-4+y*(-0.2073370639e-5+y*0.2093887211e-6)))	f2 := -0.1562499995e-1 + y*(0.1430488765e-3+y*(-0.6911147651e-5+y*(0.7621095161e-6+y*		(-0.934945152e-7))))	return math.Sqrt(0.636619772/x.Number) * (math.Sin(xx)*f1 + z*math.Cos(xx)*f2)}// besselY1 is an implementation of the formula function BESSELY.func (fn *formulaFuncs) besselY1(x formulaArg) float64 {	if x.Number < 8 {		y := x.Number * x.Number		f1 := x.Number * (-0.4900604943e13 + y*(0.1275274390e13+y*(-0.5153438139e11+y*			(0.7349264551e9+y*(-0.4237922726e7+y*0.8511937935e4)))))		f2 := 0.2499580570e14 + y*(0.4244419664e12+y*(0.3733650367e10+y*(0.2245904002e8+y*			(0.1020426050e6+y*(0.3549632885e3+y)))))		args := list.New()		args.PushBack(x)		args.PushBack(newNumberFormulaArg(1))		return f1/f2 + 0.636619772*(fn.BESSELJ(args).Number*math.Log(x.Number)-1/x.Number)	}	return math.Sqrt(0.636619772/x.Number) * math.Sin(x.Number-2.356194491)}// besselY2 is an implementation of the formula function BESSELY.func (fn *formulaFuncs) besselY2(x, n formulaArg) float64 {	tox, bym, by, byp := 2/x.Number, fn.besselY0(x), fn.besselY1(x), 0.0	for i := 1.0; i < n.Number; i++ {		byp = i*tox*by - bym		bym = by		by = byp	}	return by}// BIN2DEC function converts a Binary (a base-2 number) into a decimal number.// The syntax of the function is:////    BIN2DEC(number)//func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")	}	token := argsList.Front().Value.(formulaArg)	number := token.ToNumber()	if number.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, number.Error)	}	return fn.bin2dec(token.Value())}// BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal// (Base 16) number. The syntax of the function is:////    BIN2HEX(number,[places])//func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")	}	token := argsList.Front().Value.(formulaArg)	number := token.ToNumber()	if number.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, number.Error)	}	decimal, newList := fn.bin2dec(token.Value()), list.New()	if decimal.Type != ArgNumber {		return decimal	}	newList.PushBack(decimal)	if argsList.Len() == 2 {		newList.PushBack(argsList.Back().Value.(formulaArg))	}	return fn.dec2x("BIN2HEX", newList)}// BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)// number. The syntax of the function is:////    BIN2OCT(number,[places])//func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")	}	token := argsList.Front().Value.(formulaArg)	number := token.ToNumber()	if number.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, number.Error)	}	decimal, newList := fn.bin2dec(token.Value()), list.New()	if decimal.Type != ArgNumber {		return decimal	}	newList.PushBack(decimal)	if argsList.Len() == 2 {		newList.PushBack(argsList.Back().Value.(formulaArg))	}	return fn.dec2x("BIN2OCT", newList)}// bin2dec is an implementation of the formula function BIN2DEC.func (fn *formulaFuncs) bin2dec(number string) formulaArg {	decimal, length := 0.0, len(number)	for i := length; i > 0; i-- {		s := string(number[length-i])		if i == 10 && s == "1" {			decimal += math.Pow(-2.0, float64(i-1))			continue		}		if s == "1" {			decimal += math.Pow(2.0, float64(i-1))			continue		}		if s != "0" {			return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)		}	}	return newNumberFormulaArg(decimal)}// BITAND function returns the bitwise 'AND' for two supplied integers. The// syntax of the function is:////    BITAND(number1,number2)//func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {	return fn.bitwise("BITAND", argsList)}// BITLSHIFT function returns a supplied integer, shifted left by a specified// number of bits. The syntax of the function is:////    BITLSHIFT(number1,shift_amount)//func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {	return fn.bitwise("BITLSHIFT", argsList)}// BITOR function returns the bitwise 'OR' for two supplied integers. The// syntax of the function is:////    BITOR(number1,number2)//func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {	return fn.bitwise("BITOR", argsList)}// BITRSHIFT function returns a supplied integer, shifted right by a specified// number of bits. The syntax of the function is:////    BITRSHIFT(number1,shift_amount)//func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {	return fn.bitwise("BITRSHIFT", argsList)}// BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied// integers. The syntax of the function is:////    BITXOR(number1,number2)//func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {	return fn.bitwise("BITXOR", argsList)}// bitwise is an implementation of the formula function BITAND, BITLSHIFT,// BITOR, BITRSHIFT and BITXOR.func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))	}	num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()	if num1.Type != ArgNumber || num2.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	max := math.Pow(2, 48) - 1	if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	bitwiseFuncMap := map[string]func(a, b int) int{		"BITAND":    func(a, b int) int { return a & b },		"BITLSHIFT": func(a, b int) int { return a << uint(b) },		"BITOR":     func(a, b int) int { return a | b },		"BITRSHIFT": func(a, b int) int { return a >> uint(b) },		"BITXOR":    func(a, b int) int { return a ^ b },	}	bitwiseFunc := bitwiseFuncMap[name]	return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))}// COMPLEX function takes two arguments, representing the real and the// imaginary coefficients of a complex number, and from these, creates a// complex number. The syntax of the function is:////    COMPLEX(real_num,i_num,[suffix])//func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {	if argsList.Len() < 2 {		return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")	}	real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"	if real.Type != ArgNumber {		return real	}	if i.Type != ArgNumber {		return i	}	if argsList.Len() == 3 {		if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {			return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)		}	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))}// cmplx2str replace complex number string characters.func cmplx2str(c, suffix string) string {	if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" {		return "0"	}	c = strings.TrimPrefix(c, "(")	c = strings.TrimPrefix(c, "+0+")	c = strings.TrimPrefix(c, "-0+")	c = strings.TrimSuffix(c, ")")	c = strings.TrimPrefix(c, "0+")	if strings.HasPrefix(c, "0-") {		c = "-" + strings.TrimPrefix(c, "0-")	}	c = strings.TrimPrefix(c, "0+")	c = strings.TrimSuffix(c, "+0i")	c = strings.TrimSuffix(c, "-0i")	c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c)	c = strings.Replace(c, "i", suffix, -1)	return c}// str2cmplx convert complex number string characters.func str2cmplx(c string) string {	c = strings.Replace(c, "j", "i", -1)	if c == "i" {		c = "1i"	}	c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)	return c}// DEC2BIN function converts a decimal number into a Binary (Base 2) number.// The syntax of the function is:////    DEC2BIN(number,[places])//func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {	return fn.dec2x("DEC2BIN", argsList)}// DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)// number. The syntax of the function is:////    DEC2HEX(number,[places])//func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {	return fn.dec2x("DEC2HEX", argsList)}// DEC2OCT function converts a decimal number into an Octal (Base 8) number.// The syntax of the function is:////    DEC2OCT(number,[places])//func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {	return fn.dec2x("DEC2OCT", argsList)}// dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and// DEC2OCT.func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))	}	decimal := argsList.Front().Value.(formulaArg).ToNumber()	if decimal.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)	}	maxLimitMap := map[string]float64{		"DEC2BIN": 511,		"HEX2BIN": 511,		"OCT2BIN": 511,		"BIN2HEX": 549755813887,		"DEC2HEX": 549755813887,		"OCT2HEX": 549755813887,		"BIN2OCT": 536870911,		"DEC2OCT": 536870911,		"HEX2OCT": 536870911,	}	minLimitMap := map[string]float64{		"DEC2BIN": -512,		"HEX2BIN": -512,		"OCT2BIN": -512,		"BIN2HEX": -549755813888,		"DEC2HEX": -549755813888,		"OCT2HEX": -549755813888,		"BIN2OCT": -536870912,		"DEC2OCT": -536870912,		"HEX2OCT": -536870912,	}	baseMap := map[string]int{		"DEC2BIN": 2,		"HEX2BIN": 2,		"OCT2BIN": 2,		"BIN2HEX": 16,		"DEC2HEX": 16,		"OCT2HEX": 16,		"BIN2OCT": 8,		"DEC2OCT": 8,		"HEX2OCT": 8,	}	maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]	base := baseMap[name]	if decimal.Number < minLimit || decimal.Number > maxLimit {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	n := int64(decimal.Number)	binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)	if argsList.Len() == 2 {		places := argsList.Back().Value.(formulaArg).ToNumber()		if places.Type != ArgNumber {			return newErrorFormulaArg(formulaErrorVALUE, places.Error)		}		binaryPlaces := len(binary)		if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {			return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)		}		return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))	}	if decimal.Number < 0 && len(binary) > 10 {		return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))	}	return newStringFormulaArg(strings.ToUpper(binary))}// HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary// (Base 2) number. The syntax of the function is:////    HEX2BIN(number,[places])//func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")	}	decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()	if decimal.Type != ArgNumber {		return decimal	}	newList.PushBack(decimal)	if argsList.Len() == 2 {		newList.PushBack(argsList.Back().Value.(formulaArg))	}	return fn.dec2x("HEX2BIN", newList)}// HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal// number. The syntax of the function is:////    HEX2DEC(number)//func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")	}	return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())}// HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal// (Base 8) number. The syntax of the function is:////    HEX2OCT(number,[places])//func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")	}	decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()	if decimal.Type != ArgNumber {		return decimal	}	newList.PushBack(decimal)	if argsList.Len() == 2 {		newList.PushBack(argsList.Back().Value.(formulaArg))	}	return fn.dec2x("HEX2OCT", newList)}// hex2dec is an implementation of the formula function HEX2DEC.func (fn *formulaFuncs) hex2dec(number string) formulaArg {	decimal, length := 0.0, len(number)	for i := length; i > 0; i-- {		num, err := strconv.ParseInt(string(number[length-i]), 16, 64)		if err != nil {			return newErrorFormulaArg(formulaErrorNUM, err.Error())		}		if i == 10 && string(number[length-i]) == "F" {			decimal += math.Pow(-16.0, float64(i-1))			continue		}		decimal += float64(num) * math.Pow(16.0, float64(i-1))	}	return newNumberFormulaArg(decimal)}// IMABS function returns the absolute value (the modulus) of a complex// number. The syntax of the function is:////    IMABS(inumber)//func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newNumberFormulaArg(cmplx.Abs(inumber))}// IMAGINARY function returns the imaginary coefficient of a supplied complex// number. The syntax of the function is:////    IMAGINARY(inumber)//func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newNumberFormulaArg(imag(inumber))}// IMARGUMENT function returns the phase (also called the argument) of a// supplied complex number. The syntax of the function is:////    IMARGUMENT(inumber)//func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newNumberFormulaArg(cmplx.Phase(inumber))}// IMCONJUGATE function returns the complex conjugate of a supplied complex// number. The syntax of the function is:////    IMCONJUGATE(inumber)//func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i"))}// IMCOS function returns the cosine of a supplied complex number. The syntax// of the function is:////    IMCOS(inumber)//func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))}// IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax// of the function is:////    IMCOSH(inumber)//func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))}// IMCOT function returns the cotangent of a supplied complex number. The syntax// of the function is:////    IMCOT(inumber)//func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))}// IMCSC function returns the cosecant of a supplied complex number. The syntax// of the function is:////    IMCSC(inumber)//func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	num := 1 / cmplx.Sin(inumber)	if cmplx.IsInf(num) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))}// IMCSCH function returns the hyperbolic cosecant of a supplied complex// number. The syntax of the function is:////    IMCSCH(inumber)//func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	num := 1 / cmplx.Sinh(inumber)	if cmplx.IsInf(num) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))}// IMDIV function calculates the quotient of two complex numbers (i.e. divides// one complex number by another). The syntax of the function is:////    IMDIV(inumber1,inumber2)//func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments")	}	inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	num := inumber1 / inumber2	if cmplx.IsInf(num) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))}// IMEXP function returns the exponential of a supplied complex number. The// syntax of the function is:////    IMEXP(inumber)//func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))}// IMLN function returns the natural logarithm of a supplied complex number.// The syntax of the function is:////    IMLN(inumber)//func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	num := cmplx.Log(inumber)	if cmplx.IsInf(num) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))}// IMLOG10 function returns the common (base 10) logarithm of a supplied// complex number. The syntax of the function is:////    IMLOG10(inumber)//func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	num := cmplx.Log10(inumber)	if cmplx.IsInf(num) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))}// IMLOG2 function calculates the base 2 logarithm of a supplied complex// number. The syntax of the function is:////    IMLOG2(inumber)//func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	num := cmplx.Log(inumber)	if cmplx.IsInf(num) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i"))}// IMPOWER function returns a supplied complex number, raised to a given// power. The syntax of the function is:////    IMPOWER(inumber,number)//func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	number, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	if inumber == 0 && number == 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	num := cmplx.Pow(inumber, number)	if cmplx.IsInf(num) {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))}// IMPRODUCT function calculates the product of two or more complex numbers.// The syntax of the function is:////    IMPRODUCT(number1,[number2],...)//func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg {	product := complex128(1)	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgString:			if token.Value() == "" {				continue			}			val, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)			if err != nil {				return newErrorFormulaArg(formulaErrorNUM, err.Error())			}			product = product * val		case ArgNumber:			product = product * complex(token.Number, 0)		case ArgMatrix:			for _, row := range token.Matrix {				for _, value := range row {					if value.Value() == "" {						continue					}					val, err := strconv.ParseComplex(str2cmplx(value.Value()), 128)					if err != nil {						return newErrorFormulaArg(formulaErrorNUM, err.Error())					}					product = product * val				}			}		}	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i"))}// IMREAL function returns the real coefficient of a supplied complex number.// The syntax of the function is:////    IMREAL(inumber)//func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i"))}// IMSEC function returns the secant of a supplied complex number. The syntax// of the function is:////    IMSEC(inumber)//func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i"))}// IMSECH function returns the hyperbolic secant of a supplied complex number.// The syntax of the function is:////    IMSECH(inumber)//func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i"))}// IMSIN function returns the Sine of a supplied complex number. The syntax of// the function is:////    IMSIN(inumber)//func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i"))}// IMSINH function returns the hyperbolic sine of a supplied complex number.// The syntax of the function is:////    IMSINH(inumber)//func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i"))}// IMSQRT function returns the square root of a supplied complex number. The// syntax of the function is:////    IMSQRT(inumber)//func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i"))}// IMSUB function calculates the difference between two complex numbers// (i.e. subtracts one complex number from another). The syntax of the// function is:////    IMSUB(inumber1,inumber2)//func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments")	}	i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i"))}// IMSUM function calculates the sum of two or more complex numbers. The// syntax of the function is:////    IMSUM(inumber1,inumber2,...)//func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument")	}	var result complex128	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)		if err != nil {			return newErrorFormulaArg(formulaErrorNUM, err.Error())		}		result += num	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i"))}// IMTAN function returns the tangent of a supplied complex number. The syntax// of the function is:////    IMTAN(inumber)//func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument")	}	inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)	if err != nil {		return newErrorFormulaArg(formulaErrorNUM, err.Error())	}	return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i"))}// OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)// number. The syntax of the function is:////    OCT2BIN(number,[places])//func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")	}	token := argsList.Front().Value.(formulaArg)	number := token.ToNumber()	if number.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, number.Error)	}	decimal, newList := fn.oct2dec(token.Value()), list.New()	newList.PushBack(decimal)	if argsList.Len() == 2 {		newList.PushBack(argsList.Back().Value.(formulaArg))	}	return fn.dec2x("OCT2BIN", newList)}// OCT2DEC function converts an Octal (a base-8 number) into a decimal number.// The syntax of the function is:////    OCT2DEC(number)//func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")	}	token := argsList.Front().Value.(formulaArg)	number := token.ToNumber()	if number.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, number.Error)	}	return fn.oct2dec(token.Value())}// OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal// (Base 16) number. The syntax of the function is:////    OCT2HEX(number,[places])//func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")	}	token := argsList.Front().Value.(formulaArg)	number := token.ToNumber()	if number.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, number.Error)	}	decimal, newList := fn.oct2dec(token.Value()), list.New()	newList.PushBack(decimal)	if argsList.Len() == 2 {		newList.PushBack(argsList.Back().Value.(formulaArg))	}	return fn.dec2x("OCT2HEX", newList)}// oct2dec is an implementation of the formula function OCT2DEC.func (fn *formulaFuncs) oct2dec(number string) formulaArg {	decimal, length := 0.0, len(number)	for i := length; i > 0; i-- {		num, _ := strconv.Atoi(string(number[length-i]))		if i == 10 && string(number[length-i]) == "7" {			decimal += math.Pow(-8.0, float64(i-1))			continue		}		decimal += float64(num) * math.Pow(8.0, float64(i-1))	}	return newNumberFormulaArg(decimal)}// Math and Trigonometric Functions// ABS function returns the absolute value of any supplied number. The syntax// of the function is:////    ABS(number)//func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Abs(arg.Number))}// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given// number, and returns an angle, in radians, between 0 and π. The syntax of// the function is:////    ACOS(number)//func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Acos(arg.Number))}// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.// of the function is:////    ACOSH(number)//func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Acosh(arg.Number))}// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a// given number, and returns an angle, in radians, between 0 and π. The syntax// of the function is:////    ACOT(number)//func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))}// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied// value. The syntax of the function is:////    ACOTH(number)//func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Atanh(1 / arg.Number))}// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax// of the function is:////    ARABIC(text)//func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")	}	text := argsList.Front().Value.(formulaArg).Value()	if len(text) > 255 {		return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)	}	text = strings.ToUpper(text)	number, actualStart, index, isNegative := 0, 0, len(text)-1, false	startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1	for index >= 0 && text[index] == ' ' {		index--	}	for actualStart <= index && text[actualStart] == ' ' {		actualStart++	}	if actualStart <= index && text[actualStart] == '-' {		isNegative = true		actualStart++	}	charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}	for index >= actualStart {		startIndex = index		startChar := text[startIndex]		index--		for index >= actualStart && (text[index]|' ') == startChar {			index--		}		currentCharValue = charMap[rune(startChar)]		currentPartValue = (startIndex - index) * currentCharValue		if currentCharValue >= prevCharValue {			number += currentPartValue - subtractNumber			prevCharValue = currentCharValue			subtractNumber = 0			continue		}		subtractNumber += currentPartValue	}	if subtractNumber != 0 {		number -= subtractNumber	}	if isNegative {		number = -number	}	return newNumberFormulaArg(float64(number))}// ASIN function calculates the arcsine (i.e. the inverse sine) of a given// number, and returns an angle, in radians, between -π/2 and π/2. The syntax// of the function is:////    ASIN(number)//func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Asin(arg.Number))}// ASINH function calculates the inverse hyperbolic sine of a supplied number.// The syntax of the function is:////    ASINH(number)//func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Asinh(arg.Number))}// ATAN function calculates the arctangent (i.e. the inverse tangent) of a// given number, and returns an angle, in radians, between -π/2 and +π/2. The// syntax of the function is:////    ATAN(number)//func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Atan(arg.Number))}// ATANH function calculates the inverse hyperbolic tangent of a supplied// number. The syntax of the function is:////    ATANH(number)//func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type == ArgError {		return arg	}	return newNumberFormulaArg(math.Atanh(arg.Number))}// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a// given set of x and y coordinates, and returns an angle, in radians, between// -π/2 and +π/2. The syntax of the function is:////    ATAN2(x_num,y_num)//func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")	}	x := argsList.Back().Value.(formulaArg).ToNumber()	if x.Type == ArgError {		return x	}	y := argsList.Front().Value.(formulaArg).ToNumber()	if y.Type == ArgError {		return y	}	return newNumberFormulaArg(math.Atan2(x.Number, y.Number))}// BASE function converts a number into a supplied base (radix), and returns a// text representation of the calculated value. The syntax of the function is:////    BASE(number,radix,[min_length])//func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {	if argsList.Len() < 2 {		return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")	}	var minLength int	var err error	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	radix := argsList.Front().Next().Value.(formulaArg).ToNumber()	if radix.Type == ArgError {		return radix	}	if int(radix.Number) < 2 || int(radix.Number) > 36 {		return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")	}	if argsList.Len() > 2 {		if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {			return newErrorFormulaArg(formulaErrorVALUE, err.Error())		}	}	result := strconv.FormatInt(int64(number.Number), int(radix.Number))	if len(result) < minLength {		result = strings.Repeat("0", minLength-len(result)) + result	}	return newStringFormulaArg(strings.ToUpper(result))}// CEILING function rounds a supplied number away from zero, to the nearest// multiple of a given number. The syntax of the function is:////    CEILING(number,significance)//func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")	}	number, significance, res := 0.0, 1.0, 0.0	n := argsList.Front().Value.(formulaArg).ToNumber()	if n.Type == ArgError {		return n	}	number = n.Number	if number < 0 {		significance = -1	}	if argsList.Len() > 1 {		s := argsList.Back().Value.(formulaArg).ToNumber()		if s.Type == ArgError {			return s		}		significance = s.Number	}	if significance < 0 && number > 0 {		return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")	}	if argsList.Len() == 1 {		return newNumberFormulaArg(math.Ceil(number))	}	number, res = math.Modf(number / significance)	if res > 0 {		number++	}	return newNumberFormulaArg(number * significance)}// CEILINGdotMATH function rounds a supplied number up to a supplied multiple// of significance. The syntax of the function is:////    CEILING.MATH(number,[significance],[mode])//func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")	}	number, significance, mode := 0.0, 1.0, 1.0	n := argsList.Front().Value.(formulaArg).ToNumber()	if n.Type == ArgError {		return n	}	number = n.Number	if number < 0 {		significance = -1	}	if argsList.Len() > 1 {		s := argsList.Front().Next().Value.(formulaArg).ToNumber()		if s.Type == ArgError {			return s		}		significance = s.Number	}	if argsList.Len() == 1 {		return newNumberFormulaArg(math.Ceil(number))	}	if argsList.Len() > 2 {		m := argsList.Back().Value.(formulaArg).ToNumber()		if m.Type == ArgError {			return m		}		mode = m.Number	}	val, res := math.Modf(number / significance)	if res != 0 {		if number > 0 {			val++		} else if mode < 0 {			val--		}	}	return newNumberFormulaArg(val * significance)}// CEILINGdotPRECISE function rounds a supplied number up (regardless of the// number's sign), to the nearest multiple of a given number. The syntax of// the function is:////    CEILING.PRECISE(number,[significance])//func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")	}	number, significance := 0.0, 1.0	n := argsList.Front().Value.(formulaArg).ToNumber()	if n.Type == ArgError {		return n	}	number = n.Number	if number < 0 {		significance = -1	}	if argsList.Len() == 1 {		return newNumberFormulaArg(math.Ceil(number))	}	if argsList.Len() > 1 {		s := argsList.Back().Value.(formulaArg).ToNumber()		if s.Type == ArgError {			return s		}		significance = s.Number		significance = math.Abs(significance)		if significance == 0 {			return newNumberFormulaArg(significance)		}	}	val, res := math.Modf(number / significance)	if res != 0 {		if number > 0 {			val++		}	}	return newNumberFormulaArg(val * significance)}// COMBIN function calculates the number of combinations (in any order) of a// given number objects from a set. The syntax of the function is:////    COMBIN(number,number_chosen)//func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")	}	number, chosen, val := 0.0, 0.0, 1.0	n := argsList.Front().Value.(formulaArg).ToNumber()	if n.Type == ArgError {		return n	}	number = n.Number	c := argsList.Back().Value.(formulaArg).ToNumber()	if c.Type == ArgError {		return c	}	chosen = c.Number	number, chosen = math.Trunc(number), math.Trunc(chosen)	if chosen > number {		return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")	}	if chosen == number || chosen == 0 {		return newNumberFormulaArg(1)	}	for c := float64(1); c <= chosen; c++ {		val *= (number + 1 - c) / c	}	return newNumberFormulaArg(math.Ceil(val))}// COMBINA function calculates the number of combinations, with repetitions,// of a given number objects from a set. The syntax of the function is:////    COMBINA(number,number_chosen)//func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")	}	var number, chosen float64	n := argsList.Front().Value.(formulaArg).ToNumber()	if n.Type == ArgError {		return n	}	number = n.Number	c := argsList.Back().Value.(formulaArg).ToNumber()	if c.Type == ArgError {		return c	}	chosen = c.Number	number, chosen = math.Trunc(number), math.Trunc(chosen)	if number < chosen {		return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")	}	if number == 0 {		return newNumberFormulaArg(number)	}	args := list.New()	args.PushBack(formulaArg{		String: fmt.Sprintf("%g", number+chosen-1),		Type:   ArgString,	})	args.PushBack(formulaArg{		String: fmt.Sprintf("%g", number-1),		Type:   ArgString,	})	return fn.COMBIN(args)}// COS function calculates the cosine of a given angle. The syntax of the// function is:////    COS(number)//func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	return newNumberFormulaArg(math.Cos(val.Number))}// COSH function calculates the hyperbolic cosine (cosh) of a supplied number.// The syntax of the function is:////    COSH(number)//func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	return newNumberFormulaArg(math.Cosh(val.Number))}// COT function calculates the cotangent of a given angle. The syntax of the// function is:////    COT(number)//func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	if val.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(1 / math.Tan(val.Number))}// COTH function calculates the hyperbolic cotangent (coth) of a supplied// angle. The syntax of the function is:////    COTH(number)//func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	if val.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))}// CSC function calculates the cosecant of a given angle. The syntax of the// function is:////    CSC(number)//func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	if val.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(1 / math.Sin(val.Number))}// CSCH function calculates the hyperbolic cosecant (csch) of a supplied// angle. The syntax of the function is:////    CSCH(number)//func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	if val.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(1 / math.Sinh(val.Number))}// DECIMAL function converts a text representation of a number in a specified// base, into a decimal value. The syntax of the function is:////    DECIMAL(text,radix)//func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")	}	var text = argsList.Front().Value.(formulaArg).String	var radix int	var err error	radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)	if err != nil {		return newErrorFormulaArg(formulaErrorVALUE, err.Error())	}	if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {		text = text[2:]	}	val, err := strconv.ParseInt(text, radix, 64)	if err != nil {		return newErrorFormulaArg(formulaErrorVALUE, err.Error())	}	return newNumberFormulaArg(float64(val))}// DEGREES function converts radians into degrees. The syntax of the function// is:////    DEGREES(angle)//func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	if val.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(180.0 / math.Pi * val.Number)}// EVEN function rounds a supplied number away from zero (i.e. rounds a// positive number up and a negative number down), to the next even number.// The syntax of the function is:////    EVEN(number)//func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	sign := math.Signbit(number.Number)	m, frac := math.Modf(number.Number / 2)	val := m * 2	if frac != 0 {		if !sign {			val += 2		} else {			val -= 2		}	}	return newNumberFormulaArg(val)}// EXP function calculates the value of the mathematical constant e, raised to// the power of a given number. The syntax of the function is:////    EXP(number)//func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))}// fact returns the factorial of a supplied number.func fact(number float64) float64 {	val := float64(1)	for i := float64(2); i <= number; i++ {		val *= i	}	return val}// FACT function returns the factorial of a supplied number. The syntax of the// function is:////    FACT(number)//func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if number.Number < 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newNumberFormulaArg(fact(number.Number))}// FACTDOUBLE function returns the double factorial of a supplied number. The// syntax of the function is:////    FACTDOUBLE(number)//func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")	}	val := 1.0	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if number.Number < 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	for i := math.Trunc(number.Number); i > 1; i -= 2 {		val *= i	}	return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))}// FLOOR function rounds a supplied number towards zero to the nearest// multiple of a specified significance. The syntax of the function is:////    FLOOR(number,significance)//func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	significance := argsList.Back().Value.(formulaArg).ToNumber()	if significance.Type == ArgError {		return significance	}	if significance.Number < 0 && number.Number >= 0 {		return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")	}	val := number.Number	val, res := math.Modf(val / significance.Number)	if res != 0 {		if number.Number < 0 && res < 0 {			val--		}	}	return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))}// FLOORdotMATH function rounds a supplied number down to a supplied multiple// of significance. The syntax of the function is:////    FLOOR.MATH(number,[significance],[mode])//func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")	}	significance, mode := 1.0, 1.0	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if number.Number < 0 {		significance = -1	}	if argsList.Len() > 1 {		s := argsList.Front().Next().Value.(formulaArg).ToNumber()		if s.Type == ArgError {			return s		}		significance = s.Number	}	if argsList.Len() == 1 {		return newNumberFormulaArg(math.Floor(number.Number))	}	if argsList.Len() > 2 {		m := argsList.Back().Value.(formulaArg).ToNumber()		if m.Type == ArgError {			return m		}		mode = m.Number	}	val, res := math.Modf(number.Number / significance)	if res != 0 && number.Number < 0 && mode > 0 {		val--	}	return newNumberFormulaArg(val * significance)}// FLOORdotPRECISE function rounds a supplied number down to a supplied// multiple of significance. The syntax of the function is:////    FLOOR.PRECISE(number,[significance])//func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")	}	var significance float64	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if number.Number < 0 {		significance = -1	}	if argsList.Len() == 1 {		return newNumberFormulaArg(math.Floor(number.Number))	}	if argsList.Len() > 1 {		s := argsList.Back().Value.(formulaArg).ToNumber()		if s.Type == ArgError {			return s		}		significance = s.Number		significance = math.Abs(significance)		if significance == 0 {			return newNumberFormulaArg(significance)		}	}	val, res := math.Modf(number.Number / significance)	if res != 0 {		if number.Number < 0 {			val--		}	}	return newNumberFormulaArg(val * significance)}// gcd returns the greatest common divisor of two supplied integers.func gcd(x, y float64) float64 {	x, y = math.Trunc(x), math.Trunc(y)	if x == 0 {		return y	}	if y == 0 {		return x	}	for x != y {		if x > y {			x = x - y		} else {			y = y - x		}	}	return x}// GCD function returns the greatest common divisor of two or more supplied// integers. The syntax of the function is:////    GCD(number1,[number2],...)//func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")	}	var (		val  float64		nums = []float64{}	)	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgString:			num := token.ToNumber()			if num.Type == ArgError {				return num			}			val = num.Number		case ArgNumber:			val = token.Number		}		nums = append(nums, val)	}	if nums[0] < 0 {		return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")	}	if len(nums) == 1 {		return newNumberFormulaArg(nums[0])	}	cd := nums[0]	for i := 1; i < len(nums); i++ {		if nums[i] < 0 {			return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")		}		cd = gcd(cd, nums[i])	}	return newNumberFormulaArg(cd)}// INT function truncates a supplied number down to the closest integer. The// syntax of the function is:////    INT(number)//func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	val, frac := math.Modf(number.Number)	if frac < 0 {		val--	}	return newNumberFormulaArg(val)}// ISOdotCEILING function rounds a supplied number up (regardless of the// number's sign), to the nearest multiple of a supplied significance. The// syntax of the function is:////    ISO.CEILING(number,[significance])//func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")	}	var significance float64	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if number.Number < 0 {		significance = -1	}	if argsList.Len() == 1 {		return newNumberFormulaArg(math.Ceil(number.Number))	}	if argsList.Len() > 1 {		s := argsList.Back().Value.(formulaArg).ToNumber()		if s.Type == ArgError {			return s		}		significance = s.Number		significance = math.Abs(significance)		if significance == 0 {			return newNumberFormulaArg(significance)		}	}	val, res := math.Modf(number.Number / significance)	if res != 0 {		if number.Number > 0 {			val++		}	}	return newNumberFormulaArg(val * significance)}// lcm returns the least common multiple of two supplied integers.func lcm(a, b float64) float64 {	a = math.Trunc(a)	b = math.Trunc(b)	if a == 0 && b == 0 {		return 0	}	return a * b / gcd(a, b)}// LCM function returns the least common multiple of two or more supplied// integers. The syntax of the function is:////    LCM(number1,[number2],...)//func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")	}	var (		val  float64		nums = []float64{}		err  error	)	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgString:			if token.String == "" {				continue			}			if val, err = strconv.ParseFloat(token.String, 64); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}		case ArgNumber:			val = token.Number		}		nums = append(nums, val)	}	if nums[0] < 0 {		return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")	}	if len(nums) == 1 {		return newNumberFormulaArg(nums[0])	}	cm := nums[0]	for i := 1; i < len(nums); i++ {		if nums[i] < 0 {			return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")		}		cm = lcm(cm, nums[i])	}	return newNumberFormulaArg(cm)}// LN function calculates the natural logarithm of a given number. The syntax// of the function is:////    LN(number)//func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Log(number.Number))}// LOG function calculates the logarithm of a given number, to a supplied// base. The syntax of the function is:////    LOG(number,[base])//func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")	}	base := 10.0	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if argsList.Len() > 1 {		b := argsList.Back().Value.(formulaArg).ToNumber()		if b.Type == ArgError {			return b		}		base = b.Number	}	if number.Number == 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)	}	if base == 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)	}	if base == 1 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))}// LOG10 function calculates the base 10 logarithm of a given number. The// syntax of the function is:////    LOG10(number)//func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Log10(number.Number))}// minor function implement a minor of a matrix A is the determinant of some// smaller square matrix.func minor(sqMtx [][]float64, idx int) [][]float64 {	ret := [][]float64{}	for i := range sqMtx {		if i == 0 {			continue		}		row := []float64{}		for j := range sqMtx {			if j == idx {				continue			}			row = append(row, sqMtx[i][j])		}		ret = append(ret, row)	}	return ret}// det determinant of the 2x2 matrix.func det(sqMtx [][]float64) float64 {	if len(sqMtx) == 2 {		m00 := sqMtx[0][0]		m01 := sqMtx[0][1]		m10 := sqMtx[1][0]		m11 := sqMtx[1][1]		return m00*m11 - m10*m01	}	var res, sgn float64 = 0, 1	for j := range sqMtx {		res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))		sgn *= -1	}	return res}// MDETERM calculates the determinant of a square matrix. The// syntax of the function is:////    MDETERM(array)//func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {	var (		num    float64		numMtx = [][]float64{}		err    error		strMtx [][]formulaArg	)	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")	}	strMtx = argsList.Front().Value.(formulaArg).Matrix	var rows = len(strMtx)	for _, row := range argsList.Front().Value.(formulaArg).Matrix {		if len(row) != rows {			return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)		}		numRow := []float64{}		for _, ele := range row {			if num, err = strconv.ParseFloat(ele.String, 64); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}			numRow = append(numRow, num)		}		numMtx = append(numMtx, numRow)	}	return newNumberFormulaArg(det(numMtx))}// MOD function returns the remainder of a division between two supplied// numbers. The syntax of the function is:////    MOD(number,divisor)//func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	divisor := argsList.Back().Value.(formulaArg).ToNumber()	if divisor.Type == ArgError {		return divisor	}	if divisor.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")	}	trunc, rem := math.Modf(number.Number / divisor.Number)	if rem < 0 {		trunc--	}	return newNumberFormulaArg(number.Number - divisor.Number*trunc)}// MROUND function rounds a supplied number up or down to the nearest multiple// of a given number. The syntax of the function is:////    MROUND(number,multiple)//func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")	}	n := argsList.Front().Value.(formulaArg).ToNumber()	if n.Type == ArgError {		return n	}	multiple := argsList.Back().Value.(formulaArg).ToNumber()	if multiple.Type == ArgError {		return multiple	}	if multiple.Number == 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	if multiple.Number < 0 && n.Number > 0 ||		multiple.Number > 0 && n.Number < 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	number, res := math.Modf(n.Number / multiple.Number)	if math.Trunc(res+0.5) > 0 {		number++	}	return newNumberFormulaArg(number * multiple.Number)}// MULTINOMIAL function calculates the ratio of the factorial of a sum of// supplied values to the product of factorials of those values. The syntax of// the function is:////    MULTINOMIAL(number1,[number2],...)//func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {	val, num, denom := 0.0, 0.0, 1.0	var err error	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgString:			if token.String == "" {				continue			}			if val, err = strconv.ParseFloat(token.String, 64); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}		case ArgNumber:			val = token.Number		}		num += val		denom *= fact(val)	}	return newNumberFormulaArg(fact(num) / denom)}// MUNIT function returns the unit matrix for a specified dimension. The// syntax of the function is:////   MUNIT(dimension)//func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")	}	dimension := argsList.Back().Value.(formulaArg).ToNumber()	if dimension.Type == ArgError || dimension.Number < 0 {		return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)	}	matrix := make([][]formulaArg, 0, int(dimension.Number))	for i := 0; i < int(dimension.Number); i++ {		row := make([]formulaArg, int(dimension.Number))		for j := 0; j < int(dimension.Number); j++ {			if i == j {				row[j] = newNumberFormulaArg(1.0)			} else {				row[j] = newNumberFormulaArg(0.0)			}		}		matrix = append(matrix, row)	}	return newMatrixFormulaArg(matrix)}// ODD function ounds a supplied number away from zero (i.e. rounds a positive// number up and a negative number down), to the next odd number. The syntax// of the function is:////   ODD(number)//func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")	}	number := argsList.Back().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if number.Number == 0 {		return newNumberFormulaArg(1)	}	sign := math.Signbit(number.Number)	m, frac := math.Modf((number.Number - 1) / 2)	val := m*2 + 1	if frac != 0 {		if !sign {			val += 2		} else {			val -= 2		}	}	return newNumberFormulaArg(val)}// PI function returns the value of the mathematical constant π (pi), accurate// to 15 digits (14 decimal places). The syntax of the function is:////   PI()//func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")	}	return newNumberFormulaArg(math.Pi)}// POWER function calculates a given number, raised to a supplied power.// The syntax of the function is:////    POWER(number,power)//func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")	}	x := argsList.Front().Value.(formulaArg).ToNumber()	if x.Type == ArgError {		return x	}	y := argsList.Back().Value.(formulaArg).ToNumber()	if y.Type == ArgError {		return y	}	if x.Number == 0 && y.Number == 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	if x.Number == 0 && y.Number < 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(math.Pow(x.Number, y.Number))}// PRODUCT function returns the product (multiplication) of a supplied set of// numerical values. The syntax of the function is:////    PRODUCT(number1,[number2],...)//func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {	val, product := 0.0, 1.0	var err error	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgUnknown:			continue		case ArgString:			if token.String == "" {				continue			}			if val, err = strconv.ParseFloat(token.String, 64); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}			product = product * val		case ArgNumber:			product = product * token.Number		case ArgMatrix:			for _, row := range token.Matrix {				for _, value := range row {					if value.String == "" {						continue					}					if val, err = strconv.ParseFloat(value.String, 64); err != nil {						return newErrorFormulaArg(formulaErrorVALUE, err.Error())					}					product = product * val				}			}		}	}	return newNumberFormulaArg(product)}// QUOTIENT function returns the integer portion of a division between two// supplied numbers. The syntax of the function is:////   QUOTIENT(numerator,denominator)//func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")	}	x := argsList.Front().Value.(formulaArg).ToNumber()	if x.Type == ArgError {		return x	}	y := argsList.Back().Value.(formulaArg).ToNumber()	if y.Type == ArgError {		return y	}	if y.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(math.Trunc(x.Number / y.Number))}// RADIANS function converts radians into degrees. The syntax of the function is:////   RADIANS(angle)//func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")	}	angle := argsList.Front().Value.(formulaArg).ToNumber()	if angle.Type == ArgError {		return angle	}	return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)}// RAND function generates a random real number between 0 and 1. The syntax of// the function is:////   RAND()//func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")	}	return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())}// RANDBETWEEN function generates a random integer between two supplied// integers. The syntax of the function is:////   RANDBETWEEN(bottom,top)//func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")	}	bottom := argsList.Front().Value.(formulaArg).ToNumber()	if bottom.Type == ArgError {		return bottom	}	top := argsList.Back().Value.(formulaArg).ToNumber()	if top.Type == ArgError {		return top	}	if top.Number < bottom.Number {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))	return newNumberFormulaArg(float64(num + int64(bottom.Number)))}// romanNumerals defined a numeral system that originated in ancient Rome and// remained the usual way of writing numbers throughout Europe well into the// Late Middle Ages.type romanNumerals struct {	n float64	s string}var romanTable = [][]romanNumerals{	{		{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},		{50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},	},	{		{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},		{100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},		{10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},	},	{		{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},		{450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},		{45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},	},	{		{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},		{495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},		{90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},		{5, "V"}, {4, "IV"}, {1, "I"},	},	{		{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},		{500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},		{100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},		{10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},	},}// ROMAN function converts an arabic number to Roman. I.e. for a supplied// integer, the function returns a text string depicting the roman numeral// form of the number. The syntax of the function is:////   ROMAN(number,[form])//func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")	}	var form int	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if argsList.Len() > 1 {		f := argsList.Back().Value.(formulaArg).ToNumber()		if f.Type == ArgError {			return f		}		form = int(f.Number)		if form < 0 {			form = 0		} else if form > 4 {			form = 4		}	}	decimalTable := romanTable[0]	switch form {	case 1:		decimalTable = romanTable[1]	case 2:		decimalTable = romanTable[2]	case 3:		decimalTable = romanTable[3]	case 4:		decimalTable = romanTable[4]	}	val := math.Trunc(number.Number)	buf := bytes.Buffer{}	for _, r := range decimalTable {		for val >= r.n {			buf.WriteString(r.s)			val -= r.n		}	}	return newStringFormulaArg(buf.String())}type roundMode byteconst (	closest roundMode = iota	down	up)// round rounds a supplied number up or down.func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {	var significance float64	if digits > 0 {		significance = math.Pow(1/10.0, digits)	} else {		significance = math.Pow(10.0, -digits)	}	val, res := math.Modf(number / significance)	switch mode {	case closest:		const eps = 0.499999999		if res >= eps {			val++		} else if res <= -eps {			val--		}	case down:	case up:		if res > 0 {			val++		} else if res < 0 {			val--		}	}	return val * significance}// ROUND function rounds a supplied number up or down, to a specified number// of decimal places. The syntax of the function is:////   ROUND(number,num_digits)//func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	digits := argsList.Back().Value.(formulaArg).ToNumber()	if digits.Type == ArgError {		return digits	}	return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))}// ROUNDDOWN function rounds a supplied number down towards zero, to a// specified number of decimal places. The syntax of the function is:////   ROUNDDOWN(number,num_digits)//func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	digits := argsList.Back().Value.(formulaArg).ToNumber()	if digits.Type == ArgError {		return digits	}	return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))}// ROUNDUP function rounds a supplied number up, away from zero, to a// specified number of decimal places. The syntax of the function is:////   ROUNDUP(number,num_digits)//func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	digits := argsList.Back().Value.(formulaArg).ToNumber()	if digits.Type == ArgError {		return digits	}	return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))}// SEC function calculates the secant of a given angle. The syntax of the// function is:////    SEC(number)//func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Cos(number.Number))}// SECH function calculates the hyperbolic secant (sech) of a supplied angle.// The syntax of the function is:////    SECH(number)//func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(1 / math.Cosh(number.Number))}// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied// number. I.e. if the number is positive, the Sign function returns +1, if// the number is negative, the function returns -1 and if the number is 0// (zero), the function returns 0. The syntax of the function is:////   SIGN(number)//func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")	}	val := argsList.Front().Value.(formulaArg).ToNumber()	if val.Type == ArgError {		return val	}	if val.Number < 0 {		return newNumberFormulaArg(-1)	}	if val.Number > 0 {		return newNumberFormulaArg(1)	}	return newNumberFormulaArg(0)}// SIN function calculates the sine of a given angle. The syntax of the// function is:////    SIN(number)//func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Sin(number.Number))}// SINH function calculates the hyperbolic sine (sinh) of a supplied number.// The syntax of the function is:////    SINH(number)//func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Sinh(number.Number))}// SQRT function calculates the positive square root of a supplied number. The// syntax of the function is:////    SQRT(number)//func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")	}	value := argsList.Front().Value.(formulaArg).ToNumber()	if value.Type == ArgError {		return value	}	if value.Number < 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newNumberFormulaArg(math.Sqrt(value.Number))}// SQRTPI function returns the square root of a supplied number multiplied by// the mathematical constant, π. The syntax of the function is:////    SQRTPI(number)//func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))}// STDEV function calculates the sample standard deviation of a supplied set// of values. The syntax of the function is:////    STDEV(number1,[number2],...)//func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")	}	return fn.stdev(false, argsList)}// STDEVdotS function calculates the sample standard deviation of a supplied// set of values. The syntax of the function is:////    STDEV.S(number1,[number2],...)//func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")	}	return fn.stdev(false, argsList)}// STDEVA function estimates standard deviation based on a sample. The// standard deviation is a measure of how widely values are dispersed from// the average value (the mean). The syntax of the function is:////    STDEVA(number1,[number2],...)//func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")	}	return fn.stdev(true, argsList)}// stdev is an implementation of the formula function STDEV and STDEVA.func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {	pow := func(result, count float64, n, m formulaArg) (float64, float64) {		if result == -1 {			result = math.Pow((n.Number - m.Number), 2)		} else {			result += math.Pow((n.Number - m.Number), 2)		}		count++		return result, count	}	count, result := -1.0, -1.0	var mean formulaArg	if stdeva {		mean = fn.AVERAGEA(argsList)	} else {		mean = fn.AVERAGE(argsList)	}	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgString, ArgNumber:			if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {				continue			} else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {				num := token.ToBool()				if num.Type == ArgNumber {					result, count = pow(result, count, num, mean)					continue				}			} else {				num := token.ToNumber()				if num.Type == ArgNumber {					result, count = pow(result, count, num, mean)				}			}		case ArgList, ArgMatrix:			for _, row := range token.ToList() {				if row.Type == ArgNumber || row.Type == ArgString {					if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {						continue					} else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {						num := row.ToBool()						if num.Type == ArgNumber {							result, count = pow(result, count, num, mean)							continue						}					} else {						num := row.ToNumber()						if num.Type == ArgNumber {							result, count = pow(result, count, num, mean)						}					}				}			}		}	}	if count > 0 && result >= 0 {		return newNumberFormulaArg(math.Sqrt(result / count))	}	return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)}// POISSONdotDIST function calculates the Poisson Probability Mass Function or// the Cumulative Poisson Probability Function for a supplied set of// parameters. The syntax of the function is:////    POISSON.DIST(x,mean,cumulative)//func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")	}	return fn.POISSON(argsList)}// POISSON function calculates the Poisson Probability Mass Function or the// Cumulative Poisson Probability Function for a supplied set of parameters.// The syntax of the function is:////    POISSON(x,mean,cumulative)//func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")	}	var x, mean, cumulative formulaArg	if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {		return x	}	if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {		return mean	}	if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {		return cumulative	}	if x.Number < 0 || mean.Number <= 0 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if cumulative.Number == 1 {		summer := 0.0		floor := math.Floor(x.Number)		for i := 0; i <= int(floor); i++ {			summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))		}		return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)	}	return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))}// SUM function adds together a supplied set of numbers and returns the sum of// these values. The syntax of the function is:////    SUM(number1,[number2],...)//func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {	var sum float64	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgUnknown:			continue		case ArgString:			if num := token.ToNumber(); num.Type == ArgNumber {				sum += num.Number			}		case ArgNumber:			sum += token.Number		case ArgMatrix:			for _, row := range token.Matrix {				for _, value := range row {					if num := value.ToNumber(); num.Type == ArgNumber {						sum += num.Number					}				}			}		}	}	return newNumberFormulaArg(sum)}// SUMIF function finds the values in a supplied array, that satisfy a given// criteria, and returns the sum of the corresponding values in a second// supplied array. The syntax of the function is:////    SUMIF(range,criteria,[sum_range])//func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {	if argsList.Len() < 2 {		return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")	}	var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)	var rangeMtx = argsList.Front().Value.(formulaArg).Matrix	var sumRange [][]formulaArg	if argsList.Len() == 3 {		sumRange = argsList.Back().Value.(formulaArg).Matrix	}	var sum, val float64	var err error	for rowIdx, row := range rangeMtx {		for colIdx, col := range row {			var ok bool			fromVal := col.String			if col.String == "" {				continue			}			if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}			if ok {				if argsList.Len() == 3 {					if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {						continue					}					fromVal = sumRange[rowIdx][colIdx].String				}				if val, err = strconv.ParseFloat(fromVal, 64); err != nil {					return newErrorFormulaArg(formulaErrorVALUE, err.Error())				}				sum += val			}		}	}	return newNumberFormulaArg(sum)}// SUMSQ function returns the sum of squares of a supplied set of values. The// syntax of the function is:////    SUMSQ(number1,[number2],...)//func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {	var val, sq float64	var err error	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgString:			if token.String == "" {				continue			}			if val, err = strconv.ParseFloat(token.String, 64); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}			sq += val * val		case ArgNumber:			sq += token.Number		case ArgMatrix:			for _, row := range token.Matrix {				for _, value := range row {					if value.String == "" {						continue					}					if val, err = strconv.ParseFloat(value.String, 64); err != nil {						return newErrorFormulaArg(formulaErrorVALUE, err.Error())					}					sq += val * val				}			}		}	}	return newNumberFormulaArg(sq)}// TAN function calculates the tangent of a given angle. The syntax of the// function is:////    TAN(number)//func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Tan(number.Number))}// TANH function calculates the hyperbolic tangent (tanh) of a supplied// number. The syntax of the function is:////    TANH(number)//func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	return newNumberFormulaArg(math.Tanh(number.Number))}// TRUNC function truncates a supplied number to a specified number of decimal// places. The syntax of the function is:////    TRUNC(number,[number_digits])//func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")	}	var digits, adjust, rtrim float64	var err error	number := argsList.Front().Value.(formulaArg).ToNumber()	if number.Type == ArgError {		return number	}	if argsList.Len() > 1 {		d := argsList.Back().Value.(formulaArg).ToNumber()		if d.Type == ArgError {			return d		}		digits = d.Number		digits = math.Floor(digits)	}	adjust = math.Pow(10, digits)	x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)	if x != 0 {		if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {			return newErrorFormulaArg(formulaErrorVALUE, err.Error())		}	}	if (digits > 0) && (rtrim < adjust/10) {		return newNumberFormulaArg(number.Number)	}	return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)}// Statistical Functions// AVERAGE function returns the arithmetic mean of a list of supplied numbers.// The syntax of the function is:////    AVERAGE(number1,[number2],...)//func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {	args := []formulaArg{}	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		args = append(args, arg.Value.(formulaArg))	}	count, sum := fn.countSum(false, args)	if count == 0 {		return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")	}	return newNumberFormulaArg(sum / count)}// AVERAGEA function returns the arithmetic mean of a list of supplied numbers// with text cell and zero values. The syntax of the function is:////    AVERAGEA(number1,[number2],...)//func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {	args := []formulaArg{}	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		args = append(args, arg.Value.(formulaArg))	}	count, sum := fn.countSum(true, args)	if count == 0 {		return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")	}	return newNumberFormulaArg(sum / count)}// countSum get count and sum for a formula arguments array.func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {	for _, arg := range args {		switch arg.Type {		case ArgNumber:			if countText || !arg.Boolean {				sum += arg.Number				count++			}		case ArgString:			if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {				continue			} else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {				num := arg.ToBool()				if num.Type == ArgNumber {					count++					sum += num.Number					continue				}			}			num := arg.ToNumber()			if countText && num.Type == ArgError && arg.String != "" {				count++			}			if num.Type == ArgNumber {				sum += num.Number				count++			}		case ArgList, ArgMatrix:			cnt, summary := fn.countSum(countText, arg.ToList())			sum += summary			count += cnt		}	}	return}// COUNT function returns the count of numeric values in a supplied set of// cells or values. This count includes both numbers and dates. The syntax of// the function is:////    COUNT(value1,[value2],...)//func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {	var count int	for token := argsList.Front(); token != nil; token = token.Next() {		arg := token.Value.(formulaArg)		switch arg.Type {		case ArgString:			if arg.ToNumber().Type != ArgError {				count++			}		case ArgNumber:			count++		case ArgMatrix:			for _, row := range arg.Matrix {				for _, value := range row {					if value.ToNumber().Type != ArgError {						count++					}				}			}		}	}	return newNumberFormulaArg(float64(count))}// COUNTA function returns the number of non-blanks within a supplied set of// cells or values. The syntax of the function is:////    COUNTA(value1,[value2],...)//func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {	var count int	for token := argsList.Front(); token != nil; token = token.Next() {		arg := token.Value.(formulaArg)		switch arg.Type {		case ArgString:			if arg.String != "" {				count++			}		case ArgNumber:			count++		case ArgMatrix:			for _, row := range arg.ToList() {				switch row.Type {				case ArgString:					if row.String != "" {						count++					}				case ArgNumber:					count++				}			}		}	}	return newNumberFormulaArg(float64(count))}// COUNTBLANK function returns the number of blank cells in a supplied range.// The syntax of the function is:////    COUNTBLANK(range)//func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")	}	var count int	token := argsList.Front().Value.(formulaArg)	switch token.Type {	case ArgString:		if token.String == "" {			count++		}	case ArgList, ArgMatrix:		for _, row := range token.ToList() {			switch row.Type {			case ArgString:				if row.String == "" {					count++				}			case ArgEmpty:				count++			}		}	case ArgEmpty:		count++	}	return newNumberFormulaArg(float64(count))}// FISHER function calculates the Fisher Transformation for a supplied value.// The syntax of the function is:////    FISHER(x)//func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")	}	token := argsList.Front().Value.(formulaArg)	switch token.Type {	case ArgString:		arg := token.ToNumber()		if arg.Type == ArgNumber {			if arg.Number <= -1 || arg.Number >= 1 {				return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)			}			return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))		}	case ArgNumber:		if token.Number <= -1 || token.Number >= 1 {			return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)		}		return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))	}	return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")}// FISHERINV function calculates the inverse of the Fisher Transformation and// returns a value between -1 and +1. The syntax of the function is:////    FISHERINV(y)//func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")	}	token := argsList.Front().Value.(formulaArg)	switch token.Type {	case ArgString:		arg := token.ToNumber()		if arg.Type == ArgNumber {			return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))		}	case ArgNumber:		return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))	}	return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")}// GAMMA function returns the value of the Gamma Function, Γ(n), for a// specified number, n. The syntax of the function is:////    GAMMA(number)//func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")	}	token := argsList.Front().Value.(formulaArg)	switch token.Type {	case ArgString:		arg := token.ToNumber()		if arg.Type == ArgNumber {			if arg.Number <= 0 {				return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)			}			return newNumberFormulaArg(math.Gamma(arg.Number))		}	case ArgNumber:		if token.Number <= 0 {			return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)		}		return newNumberFormulaArg(math.Gamma(token.Number))	}	return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")}// GAMMALN function returns the natural logarithm of the Gamma Function, Γ// (n). The syntax of the function is:////    GAMMALN(x)//func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")	}	token := argsList.Front().Value.(formulaArg)	switch token.Type {	case ArgString:		arg := token.ToNumber()		if arg.Type == ArgNumber {			if arg.Number <= 0 {				return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)			}			return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))		}	case ArgNumber:		if token.Number <= 0 {			return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)		}		return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))	}	return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")}// HARMEAN function calculates the harmonic mean of a supplied set of values.// The syntax of the function is:////    HARMEAN(number1,[number2],...)//func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")	}	if min := fn.MIN(argsList); min.Number < 0 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	number, val, cnt := 0.0, 0.0, 0.0	for token := argsList.Front(); token != nil; token = token.Next() {		arg := token.Value.(formulaArg)		switch arg.Type {		case ArgString:			num := arg.ToNumber()			if num.Type != ArgNumber {				continue			}			number = num.Number		case ArgNumber:			number = arg.Number		}		if number <= 0 {			return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)		}		val += (1 / number)		cnt++	}	return newNumberFormulaArg(1 / (val / cnt))}// KURT function calculates the kurtosis of a supplied set of values. The// syntax of the function is:////    KURT(number1,[number2],...)//func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")	}	mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)	if stdev.Number > 0 {		count, summer := 0.0, 0.0		for arg := argsList.Front(); arg != nil; arg = arg.Next() {			token := arg.Value.(formulaArg)			switch token.Type {			case ArgString, ArgNumber:				num := token.ToNumber()				if num.Type == ArgError {					continue				}				summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)				count++			case ArgList, ArgMatrix:				for _, row := range token.ToList() {					if row.Type == ArgNumber || row.Type == ArgString {						num := row.ToNumber()						if num.Type == ArgError {							continue						}						summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)						count++					}				}			}		}		if count > 3 {			return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))		}	}	return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)}// NORMdotDIST function calculates the Normal Probability Density Function or// the Cumulative Normal Distribution. Function for a supplied set of// parameters. The syntax of the function is:////    NORM.DIST(x,mean,standard_dev,cumulative)//func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {	if argsList.Len() != 4 {		return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")	}	return fn.NORMDIST(argsList)}// NORMDIST function calculates the Normal Probability Density Function or the// Cumulative Normal Distribution. Function for a supplied set of parameters.// The syntax of the function is:////    NORMDIST(x,mean,standard_dev,cumulative)//func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {	if argsList.Len() != 4 {		return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")	}	var x, mean, stdDev, cumulative formulaArg	if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {		return x	}	if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {		return mean	}	if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {		return stdDev	}	if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {		return cumulative	}	if stdDev.Number < 0 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if cumulative.Number == 1 {		return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))	}	return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))}// NORMdotINV function calculates the inverse of the Cumulative Normal// Distribution Function for a supplied value of x, and a supplied// distribution mean & standard deviation. The syntax of the function is:////    NORM.INV(probability,mean,standard_dev)//func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")	}	return fn.NORMINV(argsList)}// NORMINV function calculates the inverse of the Cumulative Normal// Distribution Function for a supplied value of x, and a supplied// distribution mean & standard deviation. The syntax of the function is:////    NORMINV(probability,mean,standard_dev)//func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")	}	var prob, mean, stdDev formulaArg	if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {		return prob	}	if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {		return mean	}	if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {		return stdDev	}	if prob.Number < 0 || prob.Number > 1 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if stdDev.Number < 0 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	inv, err := norminv(prob.Number)	if err != nil {		return newErrorFormulaArg(err.Error(), err.Error())	}	return newNumberFormulaArg(inv*stdDev.Number + mean.Number)}// NORMdotSdotDIST function calculates the Standard Normal Cumulative// Distribution Function for a supplied value. The syntax of the function// is:////    NORM.S.DIST(z)//func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")	}	args := list.New().Init()	args.PushBack(argsList.Front().Value.(formulaArg))	args.PushBack(formulaArg{Type: ArgNumber, Number: 0})	args.PushBack(formulaArg{Type: ArgNumber, Number: 1})	args.PushBack(argsList.Back().Value.(formulaArg))	return fn.NORMDIST(args)}// NORMSDIST function calculates the Standard Normal Cumulative Distribution// Function for a supplied value. The syntax of the function is:////    NORMSDIST(z)//func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")	}	args := list.New().Init()	args.PushBack(argsList.Front().Value.(formulaArg))	args.PushBack(formulaArg{Type: ArgNumber, Number: 0})	args.PushBack(formulaArg{Type: ArgNumber, Number: 1})	args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})	return fn.NORMDIST(args)}// NORMSINV function calculates the inverse of the Standard Normal Cumulative// Distribution Function for a supplied probability value. The syntax of the// function is:////    NORMSINV(probability)//func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")	}	args := list.New().Init()	args.PushBack(argsList.Front().Value.(formulaArg))	args.PushBack(formulaArg{Type: ArgNumber, Number: 0})	args.PushBack(formulaArg{Type: ArgNumber, Number: 1})	return fn.NORMINV(args)}// NORMdotSdotINV function calculates the inverse of the Standard Normal// Cumulative Distribution Function for a supplied probability value. The// syntax of the function is:////    NORM.S.INV(probability)//func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")	}	args := list.New().Init()	args.PushBack(argsList.Front().Value.(formulaArg))	args.PushBack(formulaArg{Type: ArgNumber, Number: 0})	args.PushBack(formulaArg{Type: ArgNumber, Number: 1})	return fn.NORMINV(args)}// norminv returns the inverse of the normal cumulative distribution for the// specified value.func norminv(p float64) (float64, error) {	a := map[int]float64{		1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,		4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,	}	b := map[int]float64{		1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,		4: 6.680131188771972e+01, 5: -1.328068155288572e+01,	}	c := map[int]float64{		1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,		4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,	}	d := map[int]float64{		1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,		4: 3.754408661907416e+00,	}	pLow := 0.02425   // Use lower region approx. below this	pHigh := 1 - pLow // Use upper region approx. above this	if 0 < p && p < pLow {		// Rational approximation for lower region.		q := math.Sqrt(-2 * math.Log(p))		return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /			((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil	} else if pLow <= p && p <= pHigh {		// Rational approximation for central region.		q := p - 0.5		r := q * q		return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /			(((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil	} else if pHigh < p && p < 1 {		// Rational approximation for upper region.		q := math.Sqrt(-2 * math.Log(1-p))		return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /			((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil	}	return 0, errors.New(formulaErrorNUM)}// kth is an implementation of the formula function LARGE and SMALL.func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))	}	array := argsList.Front().Value.(formulaArg).ToList()	kArg := argsList.Back().Value.(formulaArg).ToNumber()	if kArg.Type != ArgNumber {		return kArg	}	k := int(kArg.Number)	if k < 1 {		return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")	}	data := []float64{}	for _, arg := range array {		if numArg := arg.ToNumber(); numArg.Type == ArgNumber {			data = append(data, numArg.Number)		}	}	if len(data) < k {		return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")	}	sort.Float64s(data)	if name == "LARGE" {		return newNumberFormulaArg(data[len(data)-k])	}	return newNumberFormulaArg(data[k-1])}// LARGE function returns the k'th largest value from an array of numeric// values. The syntax of the function is:////    LARGE(array,k)//func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {	return fn.kth("LARGE", argsList)}// MAX function returns the largest value from a supplied set of numeric// values. The syntax of the function is:////    MAX(number1,[number2],...)//func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")	}	return fn.max(false, argsList)}// MAXA function returns the largest value from a supplied set of numeric// values, while counting text and the logical value FALSE as the value 0 and// counting the logical value TRUE as the value 1. The syntax of the function// is:////    MAXA(number1,[number2],...)//func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")	}	return fn.max(true, argsList)}// max is an implementation of the formula function MAX and MAXA.func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {	max := -math.MaxFloat64	for token := argsList.Front(); token != nil; token = token.Next() {		arg := token.Value.(formulaArg)		switch arg.Type {		case ArgString:			if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {				continue			} else {				num := arg.ToBool()				if num.Type == ArgNumber && num.Number > max {					max = num.Number					continue				}			}			num := arg.ToNumber()			if num.Type != ArgError && num.Number > max {				max = num.Number			}		case ArgNumber:			if arg.Number > max {				max = arg.Number			}		case ArgList, ArgMatrix:			for _, row := range arg.ToList() {				switch row.Type {				case ArgString:					if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {						continue					} else {						num := row.ToBool()						if num.Type == ArgNumber && num.Number > max {							max = num.Number							continue						}					}					num := row.ToNumber()					if num.Type != ArgError && num.Number > max {						max = num.Number					}				case ArgNumber:					if row.Number > max {						max = row.Number					}				}			}		case ArgError:			return arg		}	}	if max == -math.MaxFloat64 {		max = 0	}	return newNumberFormulaArg(max)}// MEDIAN function returns the statistical median (the middle value) of a list// of supplied numbers. The syntax of the function is:////    MEDIAN(number1,[number2],...)//func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")	}	var values = []float64{}	var median, digits float64	var err error	for token := argsList.Front(); token != nil; token = token.Next() {		arg := token.Value.(formulaArg)		switch arg.Type {		case ArgString:			num := arg.ToNumber()			if num.Type == ArgError {				return newErrorFormulaArg(formulaErrorVALUE, num.Error)			}			values = append(values, num.Number)		case ArgNumber:			values = append(values, arg.Number)		case ArgMatrix:			for _, row := range arg.Matrix {				for _, value := range row {					if value.String == "" {						continue					}					if digits, err = strconv.ParseFloat(value.String, 64); err != nil {						return newErrorFormulaArg(formulaErrorVALUE, err.Error())					}					values = append(values, digits)				}			}		}	}	sort.Float64s(values)	if len(values)%2 == 0 {		median = (values[len(values)/2-1] + values[len(values)/2]) / 2	} else {		median = values[len(values)/2]	}	return newNumberFormulaArg(median)}// MIN function returns the smallest value from a supplied set of numeric// values. The syntax of the function is:////    MIN(number1,[number2],...)//func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")	}	return fn.min(false, argsList)}// MINA function returns the smallest value from a supplied set of numeric// values, while counting text and the logical value FALSE as the value 0 and// counting the logical value TRUE as the value 1. The syntax of the function// is:////    MINA(number1,[number2],...)//func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")	}	return fn.min(true, argsList)}// min is an implementation of the formula function MIN and MINA.func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {	min := math.MaxFloat64	for token := argsList.Front(); token != nil; token = token.Next() {		arg := token.Value.(formulaArg)		switch arg.Type {		case ArgString:			if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {				continue			} else {				num := arg.ToBool()				if num.Type == ArgNumber && num.Number < min {					min = num.Number					continue				}			}			num := arg.ToNumber()			if num.Type != ArgError && num.Number < min {				min = num.Number			}		case ArgNumber:			if arg.Number < min {				min = arg.Number			}		case ArgList, ArgMatrix:			for _, row := range arg.ToList() {				switch row.Type {				case ArgString:					if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {						continue					} else {						num := row.ToBool()						if num.Type == ArgNumber && num.Number < min {							min = num.Number							continue						}					}					num := row.ToNumber()					if num.Type != ArgError && num.Number < min {						min = num.Number					}				case ArgNumber:					if row.Number < min {						min = row.Number					}				}			}		case ArgError:			return arg		}	}	if min == math.MaxFloat64 {		min = 0	}	return newNumberFormulaArg(min)}// PERCENTILEdotINC function returns the k'th percentile (i.e. the value below// which k% of the data values fall) for a supplied range of values and a// supplied k. The syntax of the function is:////    PERCENTILE.INC(array,k)//func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")	}	return fn.PERCENTILE(argsList)}// PERCENTILE function returns the k'th percentile (i.e. the value below which// k% of the data values fall) for a supplied range of values and a supplied// k. The syntax of the function is:////    PERCENTILE(array,k)//func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")	}	array := argsList.Front().Value.(formulaArg).ToList()	k := argsList.Back().Value.(formulaArg).ToNumber()	if k.Type != ArgNumber {		return k	}	if k.Number < 0 || k.Number > 1 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	numbers := []float64{}	for _, arg := range array {		if arg.Type == ArgError {			return arg		}		num := arg.ToNumber()		if num.Type == ArgNumber {			numbers = append(numbers, num.Number)		}	}	cnt := len(numbers)	sort.Float64s(numbers)	idx := k.Number * (float64(cnt) - 1)	base := math.Floor(idx)	if idx == base {		return newNumberFormulaArg(numbers[int(idx)])	}	next := base + 1	proportion := idx - base	return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))}// PERMUT function calculates the number of permutations of a specified number// of objects from a set of objects. The syntax of the function is:////    PERMUT(number,number_chosen)//func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	chosen := argsList.Back().Value.(formulaArg).ToNumber()	if number.Type != ArgNumber {		return number	}	if chosen.Type != ArgNumber {		return chosen	}	if number.Number < chosen.Number {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))}// PERMUTATIONA function calculates the number of permutations, with// repetitions, of a specified number of objects from a set. The syntax of// the function is:////    PERMUTATIONA(number,number_chosen)//func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")	}	number := argsList.Front().Value.(formulaArg).ToNumber()	chosen := argsList.Back().Value.(formulaArg).ToNumber()	if number.Type != ArgNumber {		return number	}	if chosen.Type != ArgNumber {		return chosen	}	num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)	if num < 0 || numChosen < 0 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	return newNumberFormulaArg(math.Pow(num, numChosen))}// QUARTILE function returns a requested quartile of a supplied range of// values. The syntax of the function is:////    QUARTILE(array,quart)//func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")	}	quart := argsList.Back().Value.(formulaArg).ToNumber()	if quart.Type != ArgNumber {		return quart	}	if quart.Number < 0 || quart.Number > 4 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	args := list.New().Init()	args.PushBack(argsList.Front().Value.(formulaArg))	args.PushBack(newNumberFormulaArg(quart.Number / 4))	return fn.PERCENTILE(args)}// QUARTILEdotINC function returns a requested quartile of a supplied range of// values. The syntax of the function is:////    QUARTILE.INC(array,quart)//func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")	}	return fn.QUARTILE(argsList)}// SKEW function calculates the skewness of the distribution of a supplied set// of values. The syntax of the function is:////    SKEW(number1,[number2],...)//func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")	}	mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgNumber, ArgString:			num := token.ToNumber()			if num.Type == ArgError {				return num			}			summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)			count++		case ArgList, ArgMatrix:			for _, row := range token.ToList() {				numArg := row.ToNumber()				if numArg.Type != ArgNumber {					continue				}				summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)				count++			}		}	}	if count > 2 {		return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))	}	return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)}// SMALL function returns the k'th smallest value from an array of numeric// values. The syntax of the function is:////    SMALL(array,k)//func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {	return fn.kth("SMALL", argsList)}// VARP function returns the Variance of a given set of values. The syntax of// the function is:////    VARP(number1,[number2],...)//func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")	}	summerA, summerB, count := 0.0, 0.0, 0.0	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		for _, token := range arg.Value.(formulaArg).ToList() {			if num := token.ToNumber(); num.Type == ArgNumber {				summerA += (num.Number * num.Number)				summerB += num.Number				count++			}		}	}	if count > 0 {		summerA *= count		summerB *= summerB		return newNumberFormulaArg((summerA - summerB) / (count * count))	}	return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)}// VARdotP function returns the Variance of a given set of values. The syntax// of the function is:////    VAR.P(number1,[number2],...)//func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")	}	return fn.VARP(argsList)}// Information Functions// ISBLANK function tests if a specified cell is blank (empty) and if so,// returns TRUE; Otherwise the function returns FALSE. The syntax of the// function is:////    ISBLANK(value)//func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	result := "FALSE"	switch token.Type {	case ArgUnknown:		result = "TRUE"	case ArgString:		if token.String == "" {			result = "TRUE"		}	}	return newStringFormulaArg(result)}// ISERR function tests if an initial supplied expression (or value) returns// any Excel Error, except the #N/A error. If so, the function returns the// logical value TRUE; If the supplied value is not an error or is the #N/A// error, the ISERR function returns FALSE. The syntax of the function is:////    ISERR(value)//func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	result := "FALSE"	if token.Type == ArgError {		for _, errType := range []string{			formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,			formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,			formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,		} {			if errType == token.String {				result = "TRUE"			}		}	}	return newStringFormulaArg(result)}// ISERROR function tests if an initial supplied expression (or value) returns// an Excel Error, and if so, returns the logical value TRUE; Otherwise the// function returns FALSE. The syntax of the function is:////    ISERROR(value)//func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	result := "FALSE"	if token.Type == ArgError {		for _, errType := range []string{			formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,			formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,			formulaErrorCALC, formulaErrorGETTINGDATA,		} {			if errType == token.String {				result = "TRUE"			}		}	}	return newStringFormulaArg(result)}// ISEVEN function tests if a supplied number (or numeric expression)// evaluates to an even number, and if so, returns TRUE; Otherwise, the// function returns FALSE. The syntax of the function is:////    ISEVEN(value)//func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")	}	var (		token   = argsList.Front().Value.(formulaArg)		result  = "FALSE"		numeric int		err     error	)	if token.Type == ArgString {		if numeric, err = strconv.Atoi(token.String); err != nil {			return newErrorFormulaArg(formulaErrorVALUE, err.Error())		}		if numeric == numeric/2*2 {			return newStringFormulaArg("TRUE")		}	}	return newStringFormulaArg(result)}// ISNA function tests if an initial supplied expression (or value) returns// the Excel #N/A Error, and if so, returns TRUE; Otherwise the function// returns FALSE. The syntax of the function is:////    ISNA(value)//func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	result := "FALSE"	if token.Type == ArgError && token.String == formulaErrorNA {		result = "TRUE"	}	return newStringFormulaArg(result)}// ISNONTEXT function function tests if a supplied value is text. If not, the// function returns TRUE; If the supplied value is text, the function returns// FALSE. The syntax of the function is:////    ISNONTEXT(value)//func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	result := "TRUE"	if token.Type == ArgString && token.String != "" {		result = "FALSE"	}	return newStringFormulaArg(result)}// ISNUMBER function function tests if a supplied value is a number. If so,// the function returns TRUE; Otherwise it returns FALSE. The syntax of the// function is:////    ISNUMBER(value)//func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")	}	token, result := argsList.Front().Value.(formulaArg), false	if token.Type == ArgString && token.String != "" {		if _, err := strconv.Atoi(token.String); err == nil {			result = true		}	}	return newBoolFormulaArg(result)}// ISODD function tests if a supplied number (or numeric expression) evaluates// to an odd number, and if so, returns TRUE; Otherwise, the function returns// FALSE. The syntax of the function is:////    ISODD(value)//func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")	}	var (		token   = argsList.Front().Value.(formulaArg)		result  = "FALSE"		numeric int		err     error	)	if token.Type == ArgString {		if numeric, err = strconv.Atoi(token.String); err != nil {			return newErrorFormulaArg(formulaErrorVALUE, err.Error())		}		if numeric != numeric/2*2 {			return newStringFormulaArg("TRUE")		}	}	return newStringFormulaArg(result)}// ISTEXT function tests if a supplied value is text, and if so, returns TRUE;// Otherwise, the function returns FALSE. The syntax of the function is:////    ISTEXT(value)//func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	if token.ToNumber().Type != ArgError {		return newBoolFormulaArg(false)	}	return newBoolFormulaArg(token.Type == ArgString)}// N function converts data into a numeric value. The syntax of the function// is:////    N(value)//func (fn *formulaFuncs) N(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")	}	token, num := argsList.Front().Value.(formulaArg), 0.0	if token.Type == ArgError {		return token	}	if arg := token.ToNumber(); arg.Type == ArgNumber {		num = arg.Number	}	if token.Value() == "TRUE" {		num = 1	}	return newNumberFormulaArg(num)}// NA function returns the Excel #N/A error. This error message has the// meaning 'value not available' and is produced when an Excel Formula is// unable to find a value that it needs. The syntax of the function is:////    NA()//func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")	}	return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)}// SHEET function returns the Sheet number for a specified reference. The// syntax of the function is:////    SHEET()//func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")	}	return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))}// T function tests if a supplied value is text and if so, returns the// supplied text; Otherwise, the function returns an empty text string. The// syntax of the function is:////    T(value)//func (fn *formulaFuncs) T(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	if token.Type == ArgError {		return token	}	if token.Type == ArgNumber {		return newStringFormulaArg("")	}	return newStringFormulaArg(token.Value())}// Logical Functions// AND function tests a number of supplied conditions and returns TRUE or// FALSE. The syntax of the function is:////    AND(logical_test1,[logical_test2],...)//func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")	}	if argsList.Len() > 30 {		return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")	}	var (		and = true		val float64		err error	)	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgUnknown:			continue		case ArgString:			if token.String == "TRUE" {				continue			}			if token.String == "FALSE" {				return newStringFormulaArg(token.String)			}			if val, err = strconv.ParseFloat(token.String, 64); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}			and = and && (val != 0)		case ArgMatrix:			// TODO			return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)		}	}	return newBoolFormulaArg(and)}// FALSE function function returns the logical value FALSE. The syntax of the// function is:////    FALSE()//func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")	}	return newBoolFormulaArg(false)}// IFERROR function receives two values (or expressions) and tests if the// first of these evaluates to an error. The syntax of the function is:////    IFERROR(value,value_if_error)//func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")	}	value := argsList.Front().Value.(formulaArg)	if value.Type != ArgError {		if value.Type == ArgEmpty {			return newNumberFormulaArg(0)		}		return value	}	return argsList.Back().Value.(formulaArg)}// NOT function returns the opposite to a supplied logical value. The syntax// of the function is:////    NOT(logical)//func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")	}	token := argsList.Front().Value.(formulaArg)	switch token.Type {	case ArgString, ArgList:		if strings.ToUpper(token.String) == "TRUE" {			return newBoolFormulaArg(false)		}		if strings.ToUpper(token.String) == "FALSE" {			return newBoolFormulaArg(true)		}	case ArgNumber:		return newBoolFormulaArg(!(token.Number != 0))	case ArgError:		return token	}	return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")}// OR function tests a number of supplied conditions and returns either TRUE// or FALSE. The syntax of the function is:////    OR(logical_test1,[logical_test2],...)//func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")	}	if argsList.Len() > 30 {		return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")	}	var (		or  bool		val float64		err error	)	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgUnknown:			continue		case ArgString:			if token.String == "FALSE" {				continue			}			if token.String == "TRUE" {				or = true				continue			}			if val, err = strconv.ParseFloat(token.String, 64); err != nil {				return newErrorFormulaArg(formulaErrorVALUE, err.Error())			}			or = val != 0		case ArgMatrix:			// TODO			return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)		}	}	return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))}// TRUE function returns the logical value TRUE. The syntax of the function// is:////    TRUE()//func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")	}	return newBoolFormulaArg(true)}// Date and Time Functions// DATE returns a date, from a user-supplied year, month and day. The syntax// of the function is:////    DATE(year,month,day)//func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")	}	year := argsList.Front().Value.(formulaArg).ToNumber()	month := argsList.Front().Next().Value.(formulaArg).ToNumber()	day := argsList.Back().Value.(formulaArg).ToNumber()	if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")	}	d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))	return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())}// DATEDIF function calculates the number of days, months, or years between// two dates. The syntax of the function is:////    DATEDIF(start_date,end_date,unit)//func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")	}	startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()	if startArg.Type != ArgNumber || endArg.Type != ArgNumber {		return startArg	}	if startArg.Number > endArg.Number {		return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")	}	if startArg.Number == endArg.Number {		return newNumberFormulaArg(0)	}	unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())	startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)	sy, smm, sd := startDate.Date()	ey, emm, ed := endDate.Date()	sm, em, diff := int(smm), int(emm), 0.0	switch unit {	case "d":		return newNumberFormulaArg(endArg.Number - startArg.Number)	case "y":		diff = float64(ey - sy)		if em < sm || (em == sm && ed < sd) {			diff--		}	case "m":		ydiff := ey - sy		mdiff := em - sm		if ed < sd {			mdiff--		}		if mdiff < 0 {			ydiff--			mdiff += 12		}		diff = float64(ydiff*12 + mdiff)	case "md":		smMD := em		if ed < sd {			smMD--		}		diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1	case "ym":		diff = float64(em - sm)		if ed < sd {			diff--		}		if diff < 0 {			diff += 12		}	case "yd":		syYD := sy		if em < sm || (em == sm && ed < sd) {			syYD++		}		s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))		e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))		diff = s - e	default:		return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")	}	return newNumberFormulaArg(diff)}// NOW function returns the current date and time. The function receives no// arguments and therefore. The syntax of the function is:////    NOW()//func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")	}	now := time.Now()	_, offset := now.Zone()	return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)}// TODAY function returns the current date. The function has no arguments and// therefore. The syntax of the function is:////    TODAY()//func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {	if argsList.Len() != 0 {		return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")	}	now := time.Now()	_, offset := now.Zone()	return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)}// makeDate return date as a Unix time, the number of seconds elapsed since// January 1, 1970 UTC.func makeDate(y int, m time.Month, d int) int64 {	if y == 1900 && int(m) <= 2 {		d--	}	date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)	return date.Unix()}// daysBetween return time interval of the given start timestamp and end// timestamp.func daysBetween(startDate, endDate int64) float64 {	return float64(int(0.5 + float64((endDate-startDate)/86400)))}// Text Functions// CHAR function returns the character relating to a supplied character set// number (from 1 to 255). syntax of the function is:////    CHAR(number)//func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")	}	arg := argsList.Front().Value.(formulaArg).ToNumber()	if arg.Type != ArgNumber {		return arg	}	num := int(arg.Number)	if num < 0 || num > 255 {		return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)	}	return newStringFormulaArg(fmt.Sprintf("%c", num))}// CLEAN removes all non-printable characters from a supplied text string. The// syntax of the function is:////    CLEAN(text)//func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")	}	b := bytes.Buffer{}	for _, c := range argsList.Front().Value.(formulaArg).String {		if c > 31 {			b.WriteRune(c)		}	}	return newStringFormulaArg(b.String())}// CODE function converts the first character of a supplied text string into// the associated numeric character set code used by your computer. The// syntax of the function is:////    CODE(text)//func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {	return fn.code("CODE", argsList)}// code is an implementation of the formula function CODE and UNICODE.func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))	}	text := argsList.Front().Value.(formulaArg).Value()	if len(text) == 0 {		if name == "CODE" {			return newNumberFormulaArg(0)		}		return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)	}	return newNumberFormulaArg(float64(text[0]))}// CONCAT function joins together a series of supplied text strings into one// combined text string.////    CONCAT(text1,[text2],...)//func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {	return fn.concat("CONCAT", argsList)}// CONCATENATE function joins together a series of supplied text strings into// one combined text string.////    CONCATENATE(text1,[text2],...)//func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {	return fn.concat("CONCATENATE", argsList)}// concat is an implementation of the formula function CONCAT and CONCATENATE.func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {	buf := bytes.Buffer{}	for arg := argsList.Front(); arg != nil; arg = arg.Next() {		token := arg.Value.(formulaArg)		switch token.Type {		case ArgString:			buf.WriteString(token.String)		case ArgNumber:			if token.Boolean {				if token.Number == 0 {					buf.WriteString("FALSE")				} else {					buf.WriteString("TRUE")				}			} else {				buf.WriteString(token.Value())			}		default:			return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))		}	}	return newStringFormulaArg(buf.String())}// EXACT function tests if two supplied text strings or values are exactly// equal and if so, returns TRUE; Otherwise, the function returns FALSE. The// function is case-sensitive. The syntax of the function is:////    EXACT(text1,text2)//func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")	}	text1 := argsList.Front().Value.(formulaArg).Value()	text2 := argsList.Back().Value.(formulaArg).Value()	return newBoolFormulaArg(text1 == text2)}// FIXED function rounds a supplied number to a specified number of decimal// places and then converts this into text. The syntax of the function is:////    FIXED(number,[decimals],[no_commas])//func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")	}	numArg := argsList.Front().Value.(formulaArg).ToNumber()	if numArg.Type != ArgNumber {		return numArg	}	precision, decimals, noCommas := 0, 0, false	s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")	if argsList.Len() == 1 && len(s) == 2 {		precision = len(s[1])		decimals = len(s[1])	}	if argsList.Len() >= 2 {		decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()		if decimalsArg.Type != ArgNumber {			return decimalsArg		}		decimals = int(decimalsArg.Number)	}	if argsList.Len() == 3 {		noCommasArg := argsList.Back().Value.(formulaArg).ToBool()		if noCommasArg.Type == ArgError {			return noCommasArg		}		noCommas = noCommasArg.Boolean	}	n := math.Pow(10, float64(decimals))	r := numArg.Number * n	fixed := float64(int(r+math.Copysign(0.5, r))) / n	if decimals > 0 {		precision = decimals	}	if noCommas {		return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))	}	p := message.NewPrinter(language.English)	return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))}// FIND function returns the position of a specified character or sub-string// within a supplied text string. The function is case-sensitive. The syntax// of the function is:////    FIND(find_text,within_text,[start_num])//func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {	return fn.find("FIND", argsList)}// FINDB counts each double-byte character as 2 when you have enabled the// editing of a language that supports DBCS and then set it as the default// language. Otherwise, FINDB counts each character as 1. The syntax of the// function is:////    FINDB(find_text,within_text,[start_num])//func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {	return fn.find("FINDB", argsList)}// find is an implementation of the formula function FIND and FINDB.func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {	if argsList.Len() < 2 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))	}	findText := argsList.Front().Value.(formulaArg).Value()	withinText := argsList.Front().Next().Value.(formulaArg).Value()	startNum, result := 1, 1	if argsList.Len() == 3 {		numArg := argsList.Back().Value.(formulaArg).ToNumber()		if numArg.Type != ArgNumber {			return numArg		}		if numArg.Number < 0 {			return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)		}		startNum = int(numArg.Number)	}	if findText == "" {		return newNumberFormulaArg(float64(startNum))	}	for idx := range withinText {		if result < startNum {			result++		}		if strings.Index(withinText[idx:], findText) == 0 {			return newNumberFormulaArg(float64(result))		}		result++	}	return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)}// LEFT function returns a specified number of characters from the start of a// supplied text string. The syntax of the function is:////    LEFT(text,[num_chars])//func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {	return fn.leftRight("LEFT", argsList)}// LEFTB returns the first character or characters in a text string, based on// the number of bytes you specify. The syntax of the function is:////    LEFTB(text,[num_bytes])//func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {	return fn.leftRight("LEFTB", argsList)}// leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,// RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese// (Traditional), and Korean.func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))	}	text, numChars := argsList.Front().Value.(formulaArg).Value(), 1	if argsList.Len() == 2 {		numArg := argsList.Back().Value.(formulaArg).ToNumber()		if numArg.Type != ArgNumber {			return numArg		}		if numArg.Number < 0 {			return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)		}		numChars = int(numArg.Number)	}	if len(text) > numChars {		if name == "LEFT" || name == "LEFTB" {			return newStringFormulaArg(text[:numChars])		}		return newStringFormulaArg(text[len(text)-numChars:])	}	return newStringFormulaArg(text)}// LEN returns the length of a supplied text string. The syntax of the// function is:////    LEN(text)//func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")	}	return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))}// LENB returns the number of bytes used to represent the characters in a text// string. LENB counts 2 bytes per character only when a DBCS language is set// as the default language. Otherwise LENB behaves the same as LEN, counting// 1 byte per character. The syntax of the function is:////    LENB(text)//// TODO: the languages that support DBCS include Japanese, Chinese// (Simplified), Chinese (Traditional), and Korean.func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")	}	return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))}// LOWER converts all characters in a supplied text string to lower case. The// syntax of the function is:////    LOWER(text)//func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")	}	return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))}// MID function returns a specified number of characters from the middle of a// supplied text string. The syntax of the function is:////    MID(text,start_num,num_chars)//func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {	return fn.mid("MID", argsList)}// MIDB returns a specific number of characters from a text string, starting// at the position you specify, based on the number of bytes you specify. The// syntax of the function is:////    MID(text,start_num,num_chars)//func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {	return fn.mid("MIDB", argsList)}// mid is an implementation of the formula function MID and MIDB. TODO:// support DBCS include Japanese, Chinese (Simplified), Chinese// (Traditional), and Korean.func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))	}	text := argsList.Front().Value.(formulaArg).Value()	startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if startNumArg.Type != ArgNumber {		return startNumArg	}	if numCharsArg.Type != ArgNumber {		return numCharsArg	}	startNum := int(startNumArg.Number)	if startNum < 0 {		return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)	}	textLen := len(text)	if startNum > textLen {		return newStringFormulaArg("")	}	startNum--	endNum := startNum + int(numCharsArg.Number)	if endNum > textLen+1 {		return newStringFormulaArg(text[startNum:])	}	return newStringFormulaArg(text[startNum:endNum])}// PROPER converts all characters in a supplied text string to proper case// (i.e. all letters that do not immediately follow another letter are set to// upper case and all other characters are lower case). The syntax of the// function is:////    PROPER(text)//func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")	}	buf := bytes.Buffer{}	isLetter := false	for _, char := range argsList.Front().Value.(formulaArg).String {		if !isLetter && unicode.IsLetter(char) {			buf.WriteRune(unicode.ToUpper(char))		} else {			buf.WriteRune(unicode.ToLower(char))		}		isLetter = unicode.IsLetter(char)	}	return newStringFormulaArg(buf.String())}// REPLACE function replaces all or part of a text string with another string.// The syntax of the function is:////    REPLACE(old_text,start_num,num_chars,new_text)//func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {	return fn.replace("REPLACE", argsList)}// REPLACEB replaces part of a text string, based on the number of bytes you// specify, with a different text string.////    REPLACEB(old_text,start_num,num_chars,new_text)//func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {	return fn.replace("REPLACEB", argsList)}// replace is an implementation of the formula function REPLACE and REPLACEB.// TODO: support DBCS include Japanese, Chinese (Simplified), Chinese// (Traditional), and Korean.func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {	if argsList.Len() != 4 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))	}	oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()	startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if startNumArg.Type != ArgNumber {		return startNumArg	}	if numCharsArg.Type != ArgNumber {		return numCharsArg	}	oldTextLen, startIdx := len(oldText), int(startNumArg.Number)	if startIdx > oldTextLen {		startIdx = oldTextLen + 1	}	endIdx := startIdx + int(numCharsArg.Number)	if endIdx > oldTextLen {		endIdx = oldTextLen + 1	}	if startIdx < 1 || endIdx < 1 {		return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)	}	result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]	return newStringFormulaArg(result)}// REPT function returns a supplied text string, repeated a specified number// of times. The syntax of the function is:////    REPT(text,number_times)//func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")	}	text := argsList.Front().Value.(formulaArg)	if text.Type != ArgString {		return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")	}	times := argsList.Back().Value.(formulaArg).ToNumber()	if times.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")	}	if times.Number < 0 {		return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")	}	if times.Number == 0 {		return newStringFormulaArg("")	}	buf := bytes.Buffer{}	for i := 0; i < int(times.Number); i++ {		buf.WriteString(text.String)	}	return newStringFormulaArg(buf.String())}// RIGHT function returns a specified number of characters from the end of a// supplied text string. The syntax of the function is:////    RIGHT(text,[num_chars])//func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {	return fn.leftRight("RIGHT", argsList)}// RIGHTB returns the last character or characters in a text string, based on// the number of bytes you specify. The syntax of the function is:////    RIGHTB(text,[num_bytes])//func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {	return fn.leftRight("RIGHTB", argsList)}// SUBSTITUTE function replaces one or more instances of a given text string,// within an original text string. The syntax of the function is:////    SUBSTITUTE(text,old_text,new_text,[instance_num])//func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {	if argsList.Len() != 3 && argsList.Len() != 4 {		return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")	}	text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)	newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0	if argsList.Len() == 3 {		return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))	}	instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()	if instanceNumArg.Type != ArgNumber {		return instanceNumArg	}	instanceNum = int(instanceNumArg.Number)	if instanceNum < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")	}	str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1	for {		count--		index := strings.Index(str, oldText.Value())		if index == -1 {			pos = -1			break		} else {			pos = index + chars			if count == 0 {				break			}			idx := oldTextLen + index			chars += idx			str = str[idx:]		}	}	if pos == -1 {		return newStringFormulaArg(text.Value())	}	pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]	return newStringFormulaArg(pre + newText.Value() + post)}// TRIM removes extra spaces (i.e. all spaces except for single spaces between// words or characters) from a supplied text string. The syntax of the// function is:////    TRIM(text)//func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")	}	return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))}// UNICHAR returns the Unicode character that is referenced by the given// numeric value. The syntax of the function is:////    UNICHAR(number)//func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")	}	numArg := argsList.Front().Value.(formulaArg).ToNumber()	if numArg.Type != ArgNumber {		return numArg	}	if numArg.Number <= 0 || numArg.Number > 55295 {		return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)	}	return newStringFormulaArg(string(rune(numArg.Number)))}// UNICODE function returns the code point for the first character of a// supplied text string. The syntax of the function is:////    UNICODE(text)//func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {	return fn.code("UNICODE", argsList)}// UPPER converts all characters in a supplied text string to upper case. The// syntax of the function is:////    UPPER(text)//func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")	}	return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))}// Conditional Functions// IF function tests a supplied condition and returns one result if the// condition evaluates to TRUE, and another result if the condition evaluates// to FALSE. The syntax of the function is:////    IF(logical_test,value_if_true,value_if_false)//func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {	if argsList.Len() == 0 {		return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")	}	token := argsList.Front().Value.(formulaArg)	var (		cond   bool		err    error		result string	)	switch token.Type {	case ArgString:		if cond, err = strconv.ParseBool(token.String); err != nil {			return newErrorFormulaArg(formulaErrorVALUE, err.Error())		}		if argsList.Len() == 1 {			return newBoolFormulaArg(cond)		}		if cond {			return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)		}		if argsList.Len() == 3 {			result = argsList.Back().Value.(formulaArg).String		}	}	return newStringFormulaArg(result)}// Lookup and Reference Functions// CHOOSE function returns a value from an array, that corresponds to a// supplied index number (position). The syntax of the function is:////    CHOOSE(index_num,value1,[value2],...)//func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {	if argsList.Len() < 2 {		return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")	}	idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)	if err != nil {		return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")	}	if argsList.Len() <= idx {		return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")	}	arg := argsList.Front()	for i := 0; i < idx; i++ {		arg = arg.Next()	}	var result formulaArg	switch arg.Value.(formulaArg).Type {	case ArgString:		result = newStringFormulaArg(arg.Value.(formulaArg).String)	case ArgMatrix:		result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)	}	return result}// deepMatchRune finds whether the text deep matches/satisfies the pattern// string.func deepMatchRune(str, pattern []rune, simple bool) bool {	for len(pattern) > 0 {		switch pattern[0] {		default:			if len(str) == 0 || str[0] != pattern[0] {				return false			}		case '?':			if len(str) == 0 && !simple {				return false			}		case '*':			return deepMatchRune(str, pattern[1:], simple) ||				(len(str) > 0 && deepMatchRune(str[1:], pattern, simple))		}		str = str[1:]		pattern = pattern[1:]	}	return len(str) == 0 && len(pattern) == 0}// matchPattern finds whether the text matches or satisfies the pattern// string. The pattern supports '*' and '?' wildcards in the pattern string.func matchPattern(pattern, name string) (matched bool) {	if pattern == "" {		return name == pattern	}	if pattern == "*" {		return true	}	rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))	for _, r := range name {		rname = append(rname, r)	}	for _, r := range pattern {		rpattern = append(rpattern, r)	}	simple := false // Does extended wildcard '*' and '?' match.	return deepMatchRune(rname, rpattern, simple)}// compareFormulaArg compares the left-hand sides and the right-hand sides// formula arguments by given conditions such as case sensitive, if exact// match, and make compare result as formula criteria condition type.func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {	if lhs.Type != rhs.Type {		return criteriaErr	}	switch lhs.Type {	case ArgNumber:		if lhs.Number == rhs.Number {			return criteriaEq		}		if lhs.Number < rhs.Number {			return criteriaL		}		return criteriaG	case ArgString:		ls, rs := lhs.String, rhs.String		if !caseSensitive {			ls, rs = strings.ToLower(ls), strings.ToLower(rs)		}		if exactMatch {			match := matchPattern(rs, ls)			if match {				return criteriaEq			}			return criteriaG		}		switch strings.Compare(ls, rs) {		case 1:			return criteriaG		case -1:			return criteriaL		case 0:			return criteriaEq		}		return criteriaErr	case ArgEmpty:		return criteriaEq	case ArgList:		return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)	case ArgMatrix:		return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)	}	return criteriaErr}// compareFormulaArgList compares the left-hand sides and the right-hand sides// list type formula arguments.func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {	if len(lhs.List) < len(rhs.List) {		return criteriaL	}	if len(lhs.List) > len(rhs.List) {		return criteriaG	}	for arg := range lhs.List {		criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)		if criteria != criteriaEq {			return criteria		}	}	return criteriaEq}// compareFormulaArgMatrix compares the left-hand sides and the right-hand sides// matrix type formula arguments.func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {	if len(lhs.Matrix) < len(rhs.Matrix) {		return criteriaL	}	if len(lhs.Matrix) > len(rhs.Matrix) {		return criteriaG	}	for i := range lhs.Matrix {		left := lhs.Matrix[i]		right := lhs.Matrix[i]		if len(left) < len(right) {			return criteriaL		}		if len(left) > len(right) {			return criteriaG		}		for arg := range left {			criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)			if criteria != criteriaEq {				return criteria			}		}	}	return criteriaEq}// COLUMN function returns the first column number within a supplied reference// or the number of the current column. The syntax of the function is:////    COLUMN([reference])//func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {	if argsList.Len() > 1 {		return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")	}	if argsList.Len() == 1 {		if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {			return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))		}		if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {			return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))		}		return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")	}	col, _, _ := CellNameToCoordinates(fn.cell)	return newNumberFormulaArg(float64(col))}// COLUMNS function receives an Excel range and returns the number of columns// that are contained within the range. The syntax of the function is:////    COLUMNS(array)//func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")	}	var min, max int	if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {		crs := argsList.Front().Value.(formulaArg).cellRanges		for cr := crs.Front(); cr != nil; cr = cr.Next() {			if min == 0 {				min = cr.Value.(cellRange).From.Col			}			if min > cr.Value.(cellRange).From.Col {				min = cr.Value.(cellRange).From.Col			}			if min > cr.Value.(cellRange).To.Col {				min = cr.Value.(cellRange).To.Col			}			if max < cr.Value.(cellRange).To.Col {				max = cr.Value.(cellRange).To.Col			}			if max < cr.Value.(cellRange).From.Col {				max = cr.Value.(cellRange).From.Col			}		}	}	if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {		cr := argsList.Front().Value.(formulaArg).cellRefs		for refs := cr.Front(); refs != nil; refs = refs.Next() {			if min == 0 {				min = refs.Value.(cellRef).Col			}			if min > refs.Value.(cellRef).Col {				min = refs.Value.(cellRef).Col			}			if max < refs.Value.(cellRef).Col {				max = refs.Value.(cellRef).Col			}		}	}	if max == TotalColumns {		return newNumberFormulaArg(float64(TotalColumns))	}	result := max - min + 1	if max == min {		if min == 0 {			return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")		}		return newNumberFormulaArg(float64(1))	}	return newNumberFormulaArg(float64(result))}// HLOOKUP function 'looks up' a given value in the top row of a data array// (or table), and returns the corresponding value from another row of the// array. The syntax of the function is:////    HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])//func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {	if argsList.Len() < 3 {		return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")	}	if argsList.Len() > 4 {		return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")	}	lookupValue := argsList.Front().Value.(formulaArg)	tableArray := argsList.Front().Next().Value.(formulaArg)	if tableArray.Type != ArgMatrix {		return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")	}	rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if rowArg.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")	}	rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false	if argsList.Len() == 4 {		rangeLookup := argsList.Back().Value.(formulaArg).ToBool()		if rangeLookup.Type == ArgError {			return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)		}		if rangeLookup.Number == 0 {			exactMatch = true		}	}	row := tableArray.Matrix[0]	if exactMatch || len(tableArray.Matrix) == TotalRows {	start:		for idx, mtx := range row {			lhs := mtx			switch lookupValue.Type {			case ArgNumber:				if !lookupValue.Boolean {					lhs = mtx.ToNumber()					if lhs.Type == ArgError {						lhs = mtx					}				}			case ArgMatrix:				lhs = tableArray			}			if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {				matchIdx = idx				wasExact = true				break start			}		}	} else {		matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)	}	if matchIdx == -1 {		return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")	}	if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {		return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")	}	row = tableArray.Matrix[rowIdx]	if wasExact || !exactMatch {		return row[matchIdx]	}	return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")}// VLOOKUP function 'looks up' a given value in the left-hand column of a// data array (or table), and returns the corresponding value from another// column of the array. The syntax of the function is:////    VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])//func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {	if argsList.Len() < 3 {		return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")	}	if argsList.Len() > 4 {		return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")	}	lookupValue := argsList.Front().Value.(formulaArg)	tableArray := argsList.Front().Next().Value.(formulaArg)	if tableArray.Type != ArgMatrix {		return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")	}	colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if colIdx.Type != ArgNumber {		return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")	}	col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false	if argsList.Len() == 4 {		rangeLookup := argsList.Back().Value.(formulaArg).ToBool()		if rangeLookup.Type == ArgError {			return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)		}		if rangeLookup.Number == 0 {			exactMatch = true		}	}	if exactMatch || len(tableArray.Matrix) == TotalRows {	start:		for idx, mtx := range tableArray.Matrix {			lhs := mtx[0]			switch lookupValue.Type {			case ArgNumber:				if !lookupValue.Boolean {					lhs = mtx[0].ToNumber()					if lhs.Type == ArgError {						lhs = mtx[0]					}				}			case ArgMatrix:				lhs = tableArray			}			if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {				matchIdx = idx				wasExact = true				break start			}		}	} else {		matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)	}	if matchIdx == -1 {		return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")	}	mtx := tableArray.Matrix[matchIdx]	if col < 0 || col >= len(mtx) {		return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")	}	if wasExact || !exactMatch {		return mtx[col]	}	return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")}// vlookupBinarySearch finds the position of a target value when range lookup// is TRUE, if the data of table array can't guarantee be sorted, it will// return wrong result.func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {	var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1	for low <= high {		var mid int = low + (high-low)/2		mtx := tableArray.Matrix[mid]		lhs := mtx[0]		switch lookupValue.Type {		case ArgNumber:			if !lookupValue.Boolean {				lhs = mtx[0].ToNumber()				if lhs.Type == ArgError {					lhs = mtx[0]				}			}		case ArgMatrix:			lhs = tableArray		}		result := compareFormulaArg(lhs, lookupValue, false, false)		if result == criteriaEq {			matchIdx, wasExact = mid, true			return		} else if result == criteriaG {			high = mid - 1		} else if result == criteriaL {			matchIdx, low = mid, mid+1			if lhs.Value() != "" {				lastMatchIdx = matchIdx			}		} else {			return -1, false		}	}	matchIdx, wasExact = lastMatchIdx, true	return}// vlookupBinarySearch finds the position of a target value when range lookup// is TRUE, if the data of table array can't guarantee be sorted, it will// return wrong result.func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {	var low, high, lastMatchIdx int = 0, len(row) - 1, -1	for low <= high {		var mid int = low + (high-low)/2		mtx := row[mid]		result := compareFormulaArg(mtx, lookupValue, false, false)		if result == criteriaEq {			matchIdx, wasExact = mid, true			return		} else if result == criteriaG {			high = mid - 1		} else if result == criteriaL {			low, lastMatchIdx = mid+1, mid		} else {			return -1, false		}	}	matchIdx, wasExact = lastMatchIdx, true	return}// LOOKUP function performs an approximate match lookup in a one-column or// one-row range, and returns the corresponding value from another one-column// or one-row range. The syntax of the function is:////    LOOKUP(lookup_value,lookup_vector,[result_vector])//func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {	if argsList.Len() < 2 {		return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")	}	if argsList.Len() > 3 {		return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")	}	lookupValue := argsList.Front().Value.(formulaArg)	lookupVector := argsList.Front().Next().Value.(formulaArg)	if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {		return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")	}	cols, matchIdx := lookupCol(lookupVector), -1	for idx, col := range cols {		lhs := lookupValue		switch col.Type {		case ArgNumber:			lhs = lhs.ToNumber()			if !col.Boolean {				if lhs.Type == ArgError {					lhs = lookupValue				}			}		}		if compareFormulaArg(lhs, col, false, false) == criteriaEq {			matchIdx = idx			break		}	}	column := cols	if argsList.Len() == 3 {		column = lookupCol(argsList.Back().Value.(formulaArg))	}	if matchIdx < 0 || matchIdx >= len(column) {		return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")	}	return column[matchIdx]}// lookupCol extract columns for LOOKUP.func lookupCol(arr formulaArg) []formulaArg {	col := arr.List	if arr.Type == ArgMatrix {		col = nil		for _, r := range arr.Matrix {			if len(r) > 0 {				col = append(col, r[0])				continue			}			col = append(col, newEmptyFormulaArg())		}	}	return col}// ROW function returns the first row number within a supplied reference or// the number of the current row. The syntax of the function is:////    ROW([reference])//func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {	if argsList.Len() > 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")	}	if argsList.Len() == 1 {		if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {			return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))		}		if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {			return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))		}		return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")	}	_, row, _ := CellNameToCoordinates(fn.cell)	return newNumberFormulaArg(float64(row))}// ROWS function takes an Excel range and returns the number of rows that are// contained within the range. The syntax of the function is:////    ROWS(array)//func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")	}	var min, max int	if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {		crs := argsList.Front().Value.(formulaArg).cellRanges		for cr := crs.Front(); cr != nil; cr = cr.Next() {			if min == 0 {				min = cr.Value.(cellRange).From.Row			}			if min > cr.Value.(cellRange).From.Row {				min = cr.Value.(cellRange).From.Row			}			if min > cr.Value.(cellRange).To.Row {				min = cr.Value.(cellRange).To.Row			}			if max < cr.Value.(cellRange).To.Row {				max = cr.Value.(cellRange).To.Row			}			if max < cr.Value.(cellRange).From.Row {				max = cr.Value.(cellRange).From.Row			}		}	}	if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {		cr := argsList.Front().Value.(formulaArg).cellRefs		for refs := cr.Front(); refs != nil; refs = refs.Next() {			if min == 0 {				min = refs.Value.(cellRef).Row			}			if min > refs.Value.(cellRef).Row {				min = refs.Value.(cellRef).Row			}			if max < refs.Value.(cellRef).Row {				max = refs.Value.(cellRef).Row			}		}	}	if max == TotalRows {		return newStringFormulaArg(strconv.Itoa(TotalRows))	}	result := max - min + 1	if max == min {		if min == 0 {			return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")		}		return newNumberFormulaArg(float64(1))	}	return newStringFormulaArg(strconv.Itoa(result))}// Web Functions// ENCODEURL function returns a URL-encoded string, replacing certain// non-alphanumeric characters with the percentage symbol (%) and a// hexadecimal number. The syntax of the function is:////    ENCODEURL(url)//func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {	if argsList.Len() != 1 {		return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")	}	token := argsList.Front().Value.(formulaArg).Value()	return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))}// Financial Functions// CUMIPMT function calculates the cumulative interest paid on a loan or// investment, between two specified periods. The syntax of the function is:////    CUMIPMT(rate,nper,pv,start_period,end_period,type)//func (fn *formulaFuncs) CUMIPMT(argsList *list.List) formulaArg {	return fn.cumip("CUMIPMT", argsList)}// CUMPRINC function calculates the cumulative payment on the principal of a// loan or investment, between two specified periods. The syntax of the// function is:////    CUMPRINC(rate,nper,pv,start_period,end_period,type)//func (fn *formulaFuncs) CUMPRINC(argsList *list.List) formulaArg {	return fn.cumip("CUMPRINC", argsList)}// cumip is an implementation of the formula function CUMIPMT and CUMPRINC.func (fn *formulaFuncs) cumip(name string, argsList *list.List) formulaArg {	if argsList.Len() != 6 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 6 arguments", name))	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	nper := argsList.Front().Next().Value.(formulaArg).ToNumber()	if nper.Type != ArgNumber {		return nper	}	pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if pv.Type != ArgNumber {		return pv	}	start := argsList.Back().Prev().Prev().Value.(formulaArg).ToNumber()	if start.Type != ArgNumber {		return start	}	end := argsList.Back().Prev().Value.(formulaArg).ToNumber()	if end.Type != ArgNumber {		return end	}	typ := argsList.Back().Value.(formulaArg).ToNumber()	if typ.Type != ArgNumber {		return typ	}	if typ.Number != 0 && typ.Number != 1 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if start.Number < 1 || start.Number > end.Number {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	num := 0.0	for per := start.Number; per <= end.Number; per++ {		args := list.New().Init()		args.PushBack(rate)		args.PushBack(newNumberFormulaArg(per))		args.PushBack(nper)		args.PushBack(pv)		args.PushBack(newNumberFormulaArg(0))		args.PushBack(typ)		if name == "CUMIPMT" {			num += fn.IPMT(args).Number			continue		}		num += fn.PPMT(args).Number	}	return newNumberFormulaArg(num)}// DB function calculates the depreciation of an asset, using the Fixed// Declining Balance Method, for each period of the asset's lifetime. The// syntax of the function is:////    DB(cost,salvage,life,period,[month])//func (fn *formulaFuncs) DB(argsList *list.List) formulaArg {	if argsList.Len() < 4 {		return newErrorFormulaArg(formulaErrorVALUE, "DB requires at least 4 arguments")	}	if argsList.Len() > 5 {		return newErrorFormulaArg(formulaErrorVALUE, "DB allows at most 5 arguments")	}	cost := argsList.Front().Value.(formulaArg).ToNumber()	if cost.Type != ArgNumber {		return cost	}	salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()	if salvage.Type != ArgNumber {		return salvage	}	life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if life.Type != ArgNumber {		return life	}	period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()	if period.Type != ArgNumber {		return period	}	month := newNumberFormulaArg(12)	if argsList.Len() == 5 {		if month = argsList.Back().Value.(formulaArg).ToNumber(); month.Type != ArgNumber {			return month		}	}	if cost.Number == 0 {		return newNumberFormulaArg(0)	}	if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (month.Number < 1) {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	dr := 1 - math.Pow(salvage.Number/cost.Number, 1/life.Number)	dr = math.Round(dr*1000) / 1000	pd, depreciation := 0.0, 0.0	for per := 1; per <= int(period.Number); per++ {		if per == 1 {			depreciation = cost.Number * dr * month.Number / 12		} else if per == int(life.Number+1) {			depreciation = (cost.Number - pd) * dr * (12 - month.Number) / 12		} else {			depreciation = (cost.Number - pd) * dr		}		pd += depreciation	}	return newNumberFormulaArg(depreciation)}// DDB function calculates the depreciation of an asset, using the Double// Declining Balance Method, or another specified depreciation rate. The// syntax of the function is:////    DDB(cost,salvage,life,period,[factor])//func (fn *formulaFuncs) DDB(argsList *list.List) formulaArg {	if argsList.Len() < 4 {		return newErrorFormulaArg(formulaErrorVALUE, "DDB requires at least 4 arguments")	}	if argsList.Len() > 5 {		return newErrorFormulaArg(formulaErrorVALUE, "DDB allows at most 5 arguments")	}	cost := argsList.Front().Value.(formulaArg).ToNumber()	if cost.Type != ArgNumber {		return cost	}	salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()	if salvage.Type != ArgNumber {		return salvage	}	life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if life.Type != ArgNumber {		return life	}	period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()	if period.Type != ArgNumber {		return period	}	factor := newNumberFormulaArg(2)	if argsList.Len() == 5 {		if factor = argsList.Back().Value.(formulaArg).ToNumber(); factor.Type != ArgNumber {			return factor		}	}	if cost.Number == 0 {		return newNumberFormulaArg(0)	}	if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (factor.Number <= 0.0) || (period.Number > life.Number) {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	pd, depreciation := 0.0, 0.0	for per := 1; per <= int(period.Number); per++ {		depreciation = math.Min((cost.Number-pd)*(factor.Number/life.Number), (cost.Number - salvage.Number - pd))		pd += depreciation	}	return newNumberFormulaArg(depreciation)}// DOLLARDE function converts a dollar value in fractional notation, into a// dollar value expressed as a decimal. The syntax of the function is:////    DOLLARDE(fractional_dollar,fraction)//func (fn *formulaFuncs) DOLLARDE(argsList *list.List) formulaArg {	return fn.dollar("DOLLARDE", argsList)}// DOLLARFR function converts a dollar value in decimal notation, into a// dollar value that is expressed in fractional notation. The syntax of the// function is:////    DOLLARFR(decimal_dollar,fraction)//func (fn *formulaFuncs) DOLLARFR(argsList *list.List) formulaArg {	return fn.dollar("DOLLARFR", argsList)}// dollar is an implementation of the formula function DOLLARDE and DOLLARFR.func (fn *formulaFuncs) dollar(name string, argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))	}	dollar := argsList.Front().Value.(formulaArg).ToNumber()	if dollar.Type != ArgNumber {		return dollar	}	frac := argsList.Back().Value.(formulaArg).ToNumber()	if frac.Type != ArgNumber {		return frac	}	if frac.Number < 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	if frac.Number == 0 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	cents := math.Mod(dollar.Number, 1)	if name == "DOLLARDE" {		cents /= frac.Number		cents *= math.Pow(10, math.Ceil(math.Log10(frac.Number)))	} else {		cents *= frac.Number		cents *= math.Pow(10, -math.Ceil(math.Log10(frac.Number)))	}	return newNumberFormulaArg(math.Floor(dollar.Number) + cents)}// EFFECT function returns the effective annual interest rate for a given// nominal interest rate and number of compounding periods per year. The// syntax of the function is:////    EFFECT(nominal_rate,npery)//func (fn *formulaFuncs) EFFECT(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "EFFECT requires 2 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	npery := argsList.Back().Value.(formulaArg).ToNumber()	if npery.Type != ArgNumber {		return npery	}	if rate.Number <= 0 || npery.Number < 1 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newNumberFormulaArg(math.Pow((1+rate.Number/npery.Number), npery.Number) - 1)}// FV function calculates the Future Value of an investment with periodic// constant payments and a constant interest rate. The syntax of the function// is:////    FV(rate,nper,[pmt],[pv],[type])//func (fn *formulaFuncs) FV(argsList *list.List) formulaArg {	if argsList.Len() < 3 {		return newErrorFormulaArg(formulaErrorVALUE, "FV requires at least 3 arguments")	}	if argsList.Len() > 5 {		return newErrorFormulaArg(formulaErrorVALUE, "FV allows at most 5 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	nper := argsList.Front().Next().Value.(formulaArg).ToNumber()	if nper.Type != ArgNumber {		return nper	}	pmt := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if pmt.Type != ArgNumber {		return pmt	}	pv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)	if argsList.Len() >= 4 {		if pv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); pv.Type != ArgNumber {			return pv		}	}	if argsList.Len() == 5 {		if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {			return typ		}	}	if typ.Number != 0 && typ.Number != 1 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if rate.Number != 0 {		return newNumberFormulaArg(-pv.Number*math.Pow(1+rate.Number, nper.Number) - pmt.Number*(1+rate.Number*typ.Number)*(math.Pow(1+rate.Number, nper.Number)-1)/rate.Number)	}	return newNumberFormulaArg(-pv.Number - pmt.Number*nper.Number)}// FVSCHEDULE function calculates the Future Value of an investment with a// variable interest rate. The syntax of the function is:////    FVSCHEDULE(principal,schedule)//func (fn *formulaFuncs) FVSCHEDULE(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "FVSCHEDULE requires 2 arguments")	}	pri := argsList.Front().Value.(formulaArg).ToNumber()	if pri.Type != ArgNumber {		return pri	}	principal := pri.Number	for _, arg := range argsList.Back().Value.(formulaArg).ToList() {		if arg.Value() == "" {			continue		}		rate := arg.ToNumber()		if rate.Type != ArgNumber {			return rate		}		principal *= (1 + rate.Number)	}	return newNumberFormulaArg(principal)}// IPMT function calculates the interest payment, during a specific period of a// loan or investment that is paid in constant periodic payments, with a// constant interest rate. The syntax of the function is:////    IPMT(rate,per,nper,pv,[fv],[type])//func (fn *formulaFuncs) IPMT(argsList *list.List) formulaArg {	return fn.ipmt("IPMT", argsList)}// ipmt is an implementation of the formula function IPMT and PPMT.func (fn *formulaFuncs) ipmt(name string, argsList *list.List) formulaArg {	if argsList.Len() < 4 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 4 arguments", name))	}	if argsList.Len() > 6 {		return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 6 arguments", name))	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	per := argsList.Front().Next().Value.(formulaArg).ToNumber()	if per.Type != ArgNumber {		return per	}	nper := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if nper.Type != ArgNumber {		return nper	}	pv := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()	if pv.Type != ArgNumber {		return pv	}	fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)	if argsList.Len() >= 5 {		if fv = argsList.Front().Next().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {			return fv		}	}	if argsList.Len() == 6 {		if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {			return typ		}	}	if typ.Number != 0 && typ.Number != 1 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if per.Number <= 0 || per.Number > nper.Number {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	args := list.New().Init()	args.PushBack(rate)	args.PushBack(nper)	args.PushBack(pv)	args.PushBack(fv)	args.PushBack(typ)	pmt, capital, interest, principal := fn.PMT(args), pv.Number, 0.0, 0.0	for i := 1; i <= int(per.Number); i++ {		if typ.Number != 0 && i == 1 {			interest = 0		} else {			interest = -capital * rate.Number		}		principal = pmt.Number - interest		capital += principal	}	if name == "IPMT" {		return newNumberFormulaArg(interest)	}	return newNumberFormulaArg(principal)}// IRR function returns the Internal Rate of Return for a supplied series of// periodic cash flows (i.e. an initial investment value and a series of net// income values). The syntax of the function is:////    IRR(values,[guess])//func (fn *formulaFuncs) IRR(argsList *list.List) formulaArg {	if argsList.Len() < 1 {		return newErrorFormulaArg(formulaErrorVALUE, "IRR requires at least 1 argument")	}	if argsList.Len() > 2 {		return newErrorFormulaArg(formulaErrorVALUE, "IRR allows at most 2 arguments")	}	values, guess := argsList.Front().Value.(formulaArg).ToList(), newNumberFormulaArg(0.1)	if argsList.Len() > 1 {		if guess = argsList.Back().Value.(formulaArg).ToNumber(); guess.Type != ArgNumber {			return guess		}	}	x1, x2 := newNumberFormulaArg(0), guess	args := list.New().Init()	args.PushBack(x1)	for _, v := range values {		args.PushBack(v)	}	f1 := fn.NPV(args)	args.Front().Value = x2	f2 := fn.NPV(args)	for i := 0; i < maxFinancialIterations; i++ {		if f1.Number*f2.Number < 0 {			break		}		if math.Abs(f1.Number) < math.Abs((f2.Number)) {			x1.Number += 1.6 * (x1.Number - x2.Number)			args.Front().Value = x1			f1 = fn.NPV(args)			continue		}		x2.Number += 1.6 * (x2.Number - x1.Number)		args.Front().Value = x2		f2 = fn.NPV(args)	}	if f1.Number*f2.Number > 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	args.Front().Value = x1	f := fn.NPV(args)	var rtb, dx, xMid, fMid float64	if f.Number < 0 {		rtb = x1.Number		dx = x2.Number - x1.Number	} else {		rtb = x2.Number		dx = x1.Number - x2.Number	}	for i := 0; i < maxFinancialIterations; i++ {		dx *= 0.5		xMid = rtb + dx		args.Front().Value = newNumberFormulaArg(xMid)		fMid = fn.NPV(args).Number		if fMid <= 0 {			rtb = xMid		}		if math.Abs(fMid) < financialPercision || math.Abs(dx) < financialPercision {			break		}	}	return newNumberFormulaArg(xMid)}// ISPMT function calculates the interest paid during a specific period of a// loan or investment. The syntax of the function is:////    ISPMT(rate,per,nper,pv)//func (fn *formulaFuncs) ISPMT(argsList *list.List) formulaArg {	if argsList.Len() != 4 {		return newErrorFormulaArg(formulaErrorVALUE, "ISPMT requires 4 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	per := argsList.Front().Next().Value.(formulaArg).ToNumber()	if per.Type != ArgNumber {		return per	}	nper := argsList.Back().Prev().Value.(formulaArg).ToNumber()	if nper.Type != ArgNumber {		return nper	}	pv := argsList.Back().Value.(formulaArg).ToNumber()	if pv.Type != ArgNumber {		return pv	}	pr, payment, num := pv.Number, pv.Number/nper.Number, 0.0	for i := 0; i <= int(per.Number); i++ {		num = rate.Number * pr * -1		pr -= payment		if i == int(nper.Number) {			num = 0		}	}	return newNumberFormulaArg(num)}// MIRR function returns the Modified Internal Rate of Return for a supplied// series of periodic cash flows (i.e. a set of values, which includes an// initial investment value and a series of net income values). The syntax of// the function is:////    MIRR(values,finance_rate,reinvest_rate)//func (fn *formulaFuncs) MIRR(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "MIRR requires 3 arguments")	}	values := argsList.Front().Value.(formulaArg).ToList()	financeRate := argsList.Front().Next().Value.(formulaArg).ToNumber()	if financeRate.Type != ArgNumber {		return financeRate	}	reinvestRate := argsList.Back().Value.(formulaArg).ToNumber()	if reinvestRate.Type != ArgNumber {		return reinvestRate	}	n, fr, rr, npvPos, npvNeg := len(values), 1+financeRate.Number, 1+reinvestRate.Number, 0.0, 0.0	for i, v := range values {		val := v.ToNumber()		if val.Number >= 0 {			npvPos += val.Number / math.Pow(float64(rr), float64(i))			continue		}		npvNeg += val.Number / math.Pow(float64(fr), float64(i))	}	if npvNeg == 0 || npvPos == 0 || reinvestRate.Number <= -1 {		return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)	}	return newNumberFormulaArg(math.Pow(-npvPos*math.Pow(rr, float64(n))/(npvNeg*rr), 1/(float64(n)-1)) - 1)}// NOMINAL function returns the nominal interest rate for a given effective// interest rate and number of compounding periods per year. The syntax of// the function is:////    NOMINAL(effect_rate,npery)//func (fn *formulaFuncs) NOMINAL(argsList *list.List) formulaArg {	if argsList.Len() != 2 {		return newErrorFormulaArg(formulaErrorVALUE, "NOMINAL requires 2 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	npery := argsList.Back().Value.(formulaArg).ToNumber()	if npery.Type != ArgNumber {		return npery	}	if rate.Number <= 0 || npery.Number < 1 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newNumberFormulaArg(npery.Number * (math.Pow(rate.Number+1, 1/npery.Number) - 1))}// NPER function calculates the number of periods required to pay off a loan,// for a constant periodic payment and a constant interest rate. The syntax// of the function is:////    NPER(rate,pmt,pv,[fv],[type])//func (fn *formulaFuncs) NPER(argsList *list.List) formulaArg {	if argsList.Len() < 3 {		return newErrorFormulaArg(formulaErrorVALUE, "NPER requires at least 3 arguments")	}	if argsList.Len() > 5 {		return newErrorFormulaArg(formulaErrorVALUE, "NPER allows at most 5 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	pmt := argsList.Front().Next().Value.(formulaArg).ToNumber()	if pmt.Type != ArgNumber {		return pmt	}	pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if pv.Type != ArgNumber {		return pv	}	fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)	if argsList.Len() >= 4 {		if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {			return fv		}	}	if argsList.Len() == 5 {		if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {			return typ		}	}	if typ.Number != 0 && typ.Number != 1 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if pmt.Number == 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	if rate.Number != 0 {		p := math.Log((pmt.Number*(1+rate.Number*typ.Number)/rate.Number-fv.Number)/(pv.Number+pmt.Number*(1+rate.Number*typ.Number)/rate.Number)) / math.Log(1+rate.Number)		return newNumberFormulaArg(p)	}	return newNumberFormulaArg((-pv.Number - fv.Number) / pmt.Number)}// NPV function calculates the Net Present Value of an investment, based on a// supplied discount rate, and a series of future payments and income. The// syntax of the function is:////    NPV(rate,value1,[value2],[value3],...)//func (fn *formulaFuncs) NPV(argsList *list.List) formulaArg {	if argsList.Len() < 2 {		return newErrorFormulaArg(formulaErrorVALUE, "NPV requires at least 2 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	val, i := 0.0, 1	for arg := argsList.Front().Next(); arg != nil; arg = arg.Next() {		num := arg.Value.(formulaArg).ToNumber()		if num.Type != ArgNumber {			continue		}		val += num.Number / math.Pow(1+rate.Number, float64(i))		i++	}	return newNumberFormulaArg(val)}// PDURATION function calculates the number of periods required for an// investment to reach a specified future value. The syntax of the function// is:////    PDURATION(rate,pv,fv)//func (fn *formulaFuncs) PDURATION(argsList *list.List) formulaArg {	if argsList.Len() != 3 {		return newErrorFormulaArg(formulaErrorVALUE, "PDURATION requires 3 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	pv := argsList.Front().Next().Value.(formulaArg).ToNumber()	if pv.Type != ArgNumber {		return pv	}	fv := argsList.Back().Value.(formulaArg).ToNumber()	if fv.Type != ArgNumber {		return fv	}	if rate.Number <= 0 || pv.Number <= 0 || fv.Number <= 0 {		return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)	}	return newNumberFormulaArg((math.Log(fv.Number) - math.Log(pv.Number)) / math.Log(1+rate.Number))}// PMT function calculates the constant periodic payment required to pay off// (or partially pay off) a loan or investment, with a constant interest// rate, over a specified period. The syntax of the function is:////    PMT(rate,nper,pv,[fv],[type])//func (fn *formulaFuncs) PMT(argsList *list.List) formulaArg {	if argsList.Len() < 3 {		return newErrorFormulaArg(formulaErrorVALUE, "PMT requires at least 3 arguments")	}	if argsList.Len() > 5 {		return newErrorFormulaArg(formulaErrorVALUE, "PMT allows at most 5 arguments")	}	rate := argsList.Front().Value.(formulaArg).ToNumber()	if rate.Type != ArgNumber {		return rate	}	nper := argsList.Front().Next().Value.(formulaArg).ToNumber()	if nper.Type != ArgNumber {		return nper	}	pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()	if pv.Type != ArgNumber {		return pv	}	fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)	if argsList.Len() >= 4 {		if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {			return fv		}	}	if argsList.Len() == 5 {		if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {			return typ		}	}	if typ.Number != 0 && typ.Number != 1 {		return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)	}	if rate.Number != 0 {		p := (-fv.Number - pv.Number*math.Pow((1+rate.Number), nper.Number)) / (1 + rate.Number*typ.Number) / ((math.Pow((1+rate.Number), nper.Number) - 1) / rate.Number)		return newNumberFormulaArg(p)	}	return newNumberFormulaArg((-pv.Number - fv.Number) / nper.Number)}// PPMT function calculates the payment on the principal, during a specific// period of a loan or investment that is paid in constant periodic payments,// with a constant interest rate. The syntax of the function is:////    PPMT(rate,per,nper,pv,[fv],[type])//func (fn *formulaFuncs) PPMT(argsList *list.List) formulaArg {	return fn.ipmt("PPMT", argsList)}
 |